lixin4ever's picture
Update app.py
ffbcee9 verified
import os
import os.path as osp
import gradio as gr
import spaces
import torch
from threading import Thread
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
HEADER = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="https://github.com/DAMO-NLP-SG/VideoLLaMA3/blob/main/assets/logo.png?raw=true" alt="VideoLLaMA 3 🔥🚀🔥" style="max-width: 120px; height: auto;">
</a>
<div>
<h1>VideoLLaMA 3: Frontier Multimodal Foundation Models for Video Understanding</h1>
<h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or 💖 on this space.</h5>
</div>
</div>
<div style="display: flex; justify-content: center; margin-top: 10px;">
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3"><img src='https://img.shields.io/badge/Github-VideoLLaMA3-9C276A' style="margin-right: 5px;"></a>
<a href="https://arxiv.org/pdf/2501.13106"><img src="https://img.shields.io/badge/Arxiv-2501.13106-AD1C18" style="margin-right: 5px;"></a>
<a href="https://huggingface.co/collections/DAMO-NLP-SG/videollama3-678cdda9281a0e32fe79af15"><img src="https://img.shields.io/badge/🤗-Checkpoints-ED5A22.svg" style="margin-right: 5px;"></a>
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3/stargazers"><img src="https://img.shields.io/github/stars/DAMO-NLP-SG/VideoLLaMA3.svg?style=social"></a>
</div>
""")
device = "cuda"
model = AutoModelForCausalLM.from_pretrained(
"DAMO-NLP-SG/VideoLLaMA3-7B-Image",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
model.to(device)
processor = AutoProcessor.from_pretrained("DAMO-NLP-SG/VideoLLaMA3-7B-Image", trust_remote_code=True)
example_dir = "./examples"
image_formats = ("png", "jpg", "jpeg")
video_formats = ("mp4",)
image_examples, video_examples = [], []
if example_dir is not None:
example_files = [
osp.join(example_dir, f) for f in os.listdir(example_dir)
]
for example_file in example_files:
if example_file.endswith(image_formats):
image_examples.append([example_file])
elif example_file.endswith(video_formats):
video_examples.append([example_file])
def _on_video_upload(messages, video):
if video is not None:
# messages.append({"role": "user", "content": gr.Video(video)})
messages.append({"role": "user", "content": {"path": video}})
return messages, None
def _on_image_upload(messages, image):
if image is not None:
# messages.append({"role": "user", "content": gr.Image(image)})
messages.append({"role": "user", "content": {"path": image}})
return messages, None
def _on_text_submit(messages, text):
messages.append({"role": "user", "content": text})
return messages, ""
@spaces.GPU(duration=120)
def _predict(messages, input_text, do_sample, temperature, top_p, max_new_tokens,
fps, max_frames):
if len(input_text) > 0:
messages.append({"role": "user", "content": input_text})
new_messages = []
contents = []
for message in messages:
if message["role"] == "assistant":
if len(contents):
new_messages.append({"role": "user", "content": contents})
contents = []
new_messages.append(message)
elif message["role"] == "user":
if isinstance(message["content"], str):
contents.append(message["content"])
else:
media_path = message["content"][0]
if media_path.endswith(video_formats):
contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}})
elif media_path.endswith(image_formats):
contents.append({"type": "image", "image": {"image_path": media_path}})
else:
raise ValueError(f"Unsupported media type: {media_path}")
if len(contents):
new_messages.append({"role": "user", "content": contents})
if len(new_messages) == 0 or new_messages[-1]["role"] != "user":
return messages
generation_config = {
"do_sample": do_sample,
"temperature": temperature,
"top_p": top_p,
"max_new_tokens": max_new_tokens
}
inputs = processor(
conversation=new_messages,
add_system_prompt=True,
add_generation_prompt=True,
return_tensors="pt"
)
inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
if "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
**generation_config,
"streamer": streamer,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
messages.append({"role": "assistant", "content": ""})
for token in streamer:
messages[-1]['content'] += token
yield messages
with gr.Blocks() as interface:
gr.HTML(HEADER)
with gr.Row():
chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=835)
with gr.Column():
with gr.Tab(label="Input"):
with gr.Row():
# input_video = gr.Video(sources=["upload"], label="Upload Video")
input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image")
input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit")
submit_button = gr.Button("Generate")
gr.Examples(examples=[
[f"examples/cake.jpg", "What are the words on the cake?"],
[f"examples/chart.jpg", "What do you think of this stock? Is it worth holding? Why?"],
[f"examples/performance.png", "Which model do you think is optimal? Why?"],
], inputs=[input_image, input_text], label="Image examples")
with gr.Tab(label="Configure"):
with gr.Accordion("Generation Config", open=True):
do_sample = gr.Checkbox(value=True, label="Do Sample")
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature")
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens")
with gr.Accordion("Video Config", open=True):
fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS")
max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames")
# input_video.change(_on_video_upload, [chatbot, input_video], [chatbot, input_video])
input_image.change(_on_image_upload, [chatbot, input_image], [chatbot, input_image])
input_text.submit(_on_text_submit, [chatbot, input_text], [chatbot, input_text])
submit_button.click(
_predict,
[
chatbot, input_text, do_sample, temperature, top_p, max_new_tokens,
fps, max_frames
],
[chatbot],
)
if __name__ == "__main__":
interface.launch()