Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import os.path as osp | |
import gradio as gr | |
import spaces | |
import torch | |
from threading import Thread | |
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer | |
HEADER = (""" | |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> | |
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;"> | |
<img src="https://github.com/DAMO-NLP-SG/VideoLLaMA3/blob/main/assets/logo.png?raw=true" alt="VideoLLaMA 3 🔥🚀🔥" style="max-width: 120px; height: auto;"> | |
</a> | |
<div> | |
<h1>VideoLLaMA 3: Frontier Multimodal Foundation Models for Video Understanding</h1> | |
<h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or 💖 on this space.</h5> | |
</div> | |
</div> | |
<div style="display: flex; justify-content: center; margin-top: 10px;"> | |
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3"><img src='https://img.shields.io/badge/Github-VideoLLaMA3-9C276A' style="margin-right: 5px;"></a> | |
<a href="https://arxiv.org/pdf/2501.13106"><img src="https://img.shields.io/badge/Arxiv-2501.13106-AD1C18" style="margin-right: 5px;"></a> | |
<a href="https://huggingface.co/collections/DAMO-NLP-SG/videollama3-678cdda9281a0e32fe79af15"><img src="https://img.shields.io/badge/🤗-Checkpoints-ED5A22.svg" style="margin-right: 5px;"></a> | |
<a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3/stargazers"><img src="https://img.shields.io/github/stars/DAMO-NLP-SG/VideoLLaMA3.svg?style=social"></a> | |
</div> | |
""") | |
device = "cuda" | |
model = AutoModelForCausalLM.from_pretrained( | |
"DAMO-NLP-SG/VideoLLaMA3-7B-Image", | |
trust_remote_code=True, | |
torch_dtype=torch.bfloat16, | |
attn_implementation="flash_attention_2", | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained("DAMO-NLP-SG/VideoLLaMA3-7B-Image", trust_remote_code=True) | |
example_dir = "./examples" | |
image_formats = ("png", "jpg", "jpeg") | |
video_formats = ("mp4",) | |
image_examples, video_examples = [], [] | |
if example_dir is not None: | |
example_files = [ | |
osp.join(example_dir, f) for f in os.listdir(example_dir) | |
] | |
for example_file in example_files: | |
if example_file.endswith(image_formats): | |
image_examples.append([example_file]) | |
elif example_file.endswith(video_formats): | |
video_examples.append([example_file]) | |
def _on_video_upload(messages, video): | |
if video is not None: | |
# messages.append({"role": "user", "content": gr.Video(video)}) | |
messages.append({"role": "user", "content": {"path": video}}) | |
return messages, None | |
def _on_image_upload(messages, image): | |
if image is not None: | |
# messages.append({"role": "user", "content": gr.Image(image)}) | |
messages.append({"role": "user", "content": {"path": image}}) | |
return messages, None | |
def _on_text_submit(messages, text): | |
messages.append({"role": "user", "content": text}) | |
return messages, "" | |
def _predict(messages, input_text, do_sample, temperature, top_p, max_new_tokens, | |
fps, max_frames): | |
if len(input_text) > 0: | |
messages.append({"role": "user", "content": input_text}) | |
new_messages = [] | |
contents = [] | |
for message in messages: | |
if message["role"] == "assistant": | |
if len(contents): | |
new_messages.append({"role": "user", "content": contents}) | |
contents = [] | |
new_messages.append(message) | |
elif message["role"] == "user": | |
if isinstance(message["content"], str): | |
contents.append(message["content"]) | |
else: | |
media_path = message["content"][0] | |
if media_path.endswith(video_formats): | |
contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}}) | |
elif media_path.endswith(image_formats): | |
contents.append({"type": "image", "image": {"image_path": media_path}}) | |
else: | |
raise ValueError(f"Unsupported media type: {media_path}") | |
if len(contents): | |
new_messages.append({"role": "user", "content": contents}) | |
if len(new_messages) == 0 or new_messages[-1]["role"] != "user": | |
return messages | |
generation_config = { | |
"do_sample": do_sample, | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_new_tokens": max_new_tokens | |
} | |
inputs = processor( | |
conversation=new_messages, | |
add_system_prompt=True, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
) | |
inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()} | |
if "pixel_values" in inputs: | |
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16) | |
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
**generation_config, | |
"streamer": streamer, | |
} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
messages.append({"role": "assistant", "content": ""}) | |
for token in streamer: | |
messages[-1]['content'] += token | |
yield messages | |
with gr.Blocks() as interface: | |
gr.HTML(HEADER) | |
with gr.Row(): | |
chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=835) | |
with gr.Column(): | |
with gr.Tab(label="Input"): | |
with gr.Row(): | |
# input_video = gr.Video(sources=["upload"], label="Upload Video") | |
input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image") | |
input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit") | |
submit_button = gr.Button("Generate") | |
gr.Examples(examples=[ | |
[f"examples/cake.jpg", "What are the words on the cake?"], | |
[f"examples/chart.jpg", "What do you think of this stock? Is it worth holding? Why?"], | |
[f"examples/performance.png", "Which model do you think is optimal? Why?"], | |
], inputs=[input_image, input_text], label="Image examples") | |
with gr.Tab(label="Configure"): | |
with gr.Accordion("Generation Config", open=True): | |
do_sample = gr.Checkbox(value=True, label="Do Sample") | |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature") | |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P") | |
max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens") | |
with gr.Accordion("Video Config", open=True): | |
fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS") | |
max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames") | |
# input_video.change(_on_video_upload, [chatbot, input_video], [chatbot, input_video]) | |
input_image.change(_on_image_upload, [chatbot, input_image], [chatbot, input_image]) | |
input_text.submit(_on_text_submit, [chatbot, input_text], [chatbot, input_text]) | |
submit_button.click( | |
_predict, | |
[ | |
chatbot, input_text, do_sample, temperature, top_p, max_new_tokens, | |
fps, max_frames | |
], | |
[chatbot], | |
) | |
if __name__ == "__main__": | |
interface.launch() | |