Spaces:
Runtime error
Runtime error
liuyuan-pal
commited on
Commit
·
a14768e
1
Parent(s):
741df38
update
Browse files- app.py +21 -13
- detection_test.py +35 -0
- hf_demo/examples/basket.png +0 -0
- sam_utils.py +2 -3
app.py
CHANGED
@@ -7,6 +7,7 @@ import torch
|
|
7 |
import os
|
8 |
import fire
|
9 |
from omegaconf import OmegaConf
|
|
|
10 |
|
11 |
from ldm.util import add_margin, instantiate_from_config
|
12 |
from sam_utils import sam_init, sam_out_nosave
|
@@ -95,21 +96,28 @@ def white_background(img):
|
|
95 |
return Image.fromarray(rgb)
|
96 |
|
97 |
def sam_predict(predictor, raw_im):
|
98 |
-
raw_im
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
image_sam = Image.fromarray(out_img, mode='RGBA')
|
|
|
113 |
torch.cuda.empty_cache()
|
114 |
return image_sam
|
115 |
|
|
|
7 |
import os
|
8 |
import fire
|
9 |
from omegaconf import OmegaConf
|
10 |
+
from rembg import remove
|
11 |
|
12 |
from ldm.util import add_margin, instantiate_from_config
|
13 |
from sam_utils import sam_init, sam_out_nosave
|
|
|
96 |
return Image.fromarray(rgb)
|
97 |
|
98 |
def sam_predict(predictor, raw_im):
|
99 |
+
raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
|
100 |
+
image_nobg = remove(raw_im.convert('RGBA'), alpha_matting=True)
|
101 |
+
arr = np.asarray(image_nobg)[:, :, -1]
|
102 |
+
x_nonzero = np.nonzero(arr.sum(axis=0))
|
103 |
+
y_nonzero = np.nonzero(arr.sum(axis=1))
|
104 |
+
x_min = int(x_nonzero[0].min())
|
105 |
+
y_min = int(y_nonzero[0].min())
|
106 |
+
x_max = int(x_nonzero[0].max())
|
107 |
+
y_max = int(y_nonzero[0].max())
|
108 |
+
# image_nobg.save('./nobg.png')
|
109 |
+
|
110 |
+
image_nobg.thumbnail([512, 512], Image.Resampling.LANCZOS)
|
111 |
+
image_sam = sam_out_nosave(predictor, image_nobg.convert("RGB"), (x_min, y_min, x_max, y_max))
|
112 |
+
|
113 |
+
# imsave('./mask.png', np.asarray(image_sam)[:,:,3]*255)
|
114 |
+
image_sam = np.asarray(image_sam, np.float32) / 255
|
115 |
+
out_mask = image_sam[:, :, 3:]
|
116 |
+
out_rgb = image_sam[:, :, :3] * out_mask + 1 - out_mask
|
117 |
+
out_img = (np.concatenate([out_rgb, out_mask], 2) * 255).astype(np.uint8)
|
118 |
|
119 |
image_sam = Image.fromarray(out_img, mode='RGBA')
|
120 |
+
# image_sam.save('./output.png')
|
121 |
torch.cuda.empty_cache()
|
122 |
return image_sam
|
123 |
|
detection_test.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from PIL import Image
|
3 |
+
from skimage.io import imsave
|
4 |
+
|
5 |
+
from app import white_background
|
6 |
+
from ldm.util import add_margin
|
7 |
+
from sam_utils import sam_out_nosave, sam_init
|
8 |
+
from rembg import remove
|
9 |
+
|
10 |
+
raw_im = Image.open('hf_demo/examples/basket.png')
|
11 |
+
predictor = sam_init()
|
12 |
+
|
13 |
+
raw_im.thumbnail([512, 512], Image.Resampling.LANCZOS)
|
14 |
+
width, height = raw_im.size
|
15 |
+
image_nobg = remove(raw_im.convert('RGBA'), alpha_matting=True)
|
16 |
+
arr = np.asarray(image_nobg)[:, :, -1]
|
17 |
+
x_nonzero = np.nonzero(arr.sum(axis=0))
|
18 |
+
y_nonzero = np.nonzero(arr.sum(axis=1))
|
19 |
+
x_min = int(x_nonzero[0].min())
|
20 |
+
y_min = int(y_nonzero[0].min())
|
21 |
+
x_max = int(x_nonzero[0].max())
|
22 |
+
y_max = int(y_nonzero[0].max())
|
23 |
+
# image_nobg.save('./nobg.png')
|
24 |
+
|
25 |
+
image_nobg.thumbnail([512, 512], Image.Resampling.LANCZOS)
|
26 |
+
image_sam = sam_out_nosave(predictor, image_nobg.convert("RGB"), (x_min, y_min, x_max, y_max))
|
27 |
+
|
28 |
+
# imsave('./mask.png', np.asarray(image_sam)[:,:,3]*255)
|
29 |
+
image_sam = np.asarray(image_sam, np.float32) / 255
|
30 |
+
out_mask = image_sam[:, :, 3:]
|
31 |
+
out_rgb = image_sam[:, :, :3] * out_mask + 1 - out_mask
|
32 |
+
out_img = (np.concatenate([out_rgb, out_mask], 2) * 255).astype(np.uint8)
|
33 |
+
|
34 |
+
image_sam = Image.fromarray(out_img, mode='RGBA')
|
35 |
+
# image_sam.save('./output.png')
|
hf_demo/examples/basket.png
ADDED
sam_utils.py
CHANGED
@@ -16,10 +16,9 @@ def sam_init(device_id=0):
|
|
16 |
predictor = SamPredictor(sam)
|
17 |
return predictor
|
18 |
|
19 |
-
def sam_out_nosave(predictor, input_image, ):
|
|
|
20 |
image = np.asarray(input_image)
|
21 |
-
h, w, _ = image.shape
|
22 |
-
bbox = np.array([0, 0, h, w])
|
23 |
|
24 |
start_time = time.time()
|
25 |
predictor.set_image(image)
|
|
|
16 |
predictor = SamPredictor(sam)
|
17 |
return predictor
|
18 |
|
19 |
+
def sam_out_nosave(predictor, input_image, bbox):
|
20 |
+
bbox = np.array(bbox)
|
21 |
image = np.asarray(input_image)
|
|
|
|
|
22 |
|
23 |
start_time = time.time()
|
24 |
predictor.set_image(image)
|