Spaces:
Sleeping
Sleeping
Update app.py
Browse filesupdate
init gradio space
- app.py +91 -0
- debiased_openclip.pt +3 -0
- open_clip_pytorch_model.bin +3 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import open_clip
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import pandas as pd
|
6 |
+
import os
|
7 |
+
|
8 |
+
open_clip_model, _, preprocess = open_clip.create_model_and_transforms(
|
9 |
+
'ViT-B-32',
|
10 |
+
pretrained='./open_clip_pytorch_model.bin')
|
11 |
+
debiased_model, _, _ = open_clip.create_model_and_transforms(
|
12 |
+
'ViT-B-32',
|
13 |
+
pretrained='./debiased_openclip.pt')
|
14 |
+
open_clip_model.eval()
|
15 |
+
debiased_model.eval()
|
16 |
+
tokenizer = open_clip.get_tokenizer('ViT-B-32')
|
17 |
+
|
18 |
+
def get_clip_scores(images, candidates, w=1):
|
19 |
+
images = images / np.sqrt(np.sum(images**2, axis=1, keepdims=True))
|
20 |
+
candidates = candidates / np.sqrt(np.sum(candidates**2, axis=1, keepdims=True))
|
21 |
+
per = w*np.clip(np.sum(images * candidates, axis=1), 0, None)
|
22 |
+
return per
|
23 |
+
|
24 |
+
def predict(text1, text2, input_img):
|
25 |
+
with torch.no_grad():
|
26 |
+
image = preprocess(input_img)
|
27 |
+
image= image.unsqueeze(0)
|
28 |
+
image_features = open_clip_model.encode_image(image)
|
29 |
+
debiased_image_features = debiased_model.encode_image(image)
|
30 |
+
texts = tokenizer([text1])
|
31 |
+
texts2 = tokenizer([text2])
|
32 |
+
text_features = open_clip_model.encode_text(texts)
|
33 |
+
debiased_text_features = debiased_model.encode_text(texts)
|
34 |
+
# print(image_features.size(), text_features.size())
|
35 |
+
# print(debiased_image_features.size(), debiased_text_features.size())
|
36 |
+
score = get_clip_scores(image_features.numpy(), text_features.numpy())
|
37 |
+
debiased_score = get_clip_scores(debiased_image_features.numpy(), debiased_text_features.numpy())
|
38 |
+
text_features2 = open_clip_model.encode_text(texts2)
|
39 |
+
debiased_text_features2 = debiased_model.encode_text(texts2)
|
40 |
+
score2 = get_clip_scores(image_features.numpy(), text_features2.numpy())
|
41 |
+
debiased_score2 = get_clip_scores(debiased_image_features.numpy(), debiased_text_features2.numpy())
|
42 |
+
print(score, score2)
|
43 |
+
data = {'label': ["OpenCLIP for text1", "Debiased CLIP for text1",
|
44 |
+
"OpenCLIP for text2", "Debiased CLIP for text2"
|
45 |
+
],
|
46 |
+
'score': [score[0], debiased_score[0], score2[0], debiased_score2[0]]
|
47 |
+
}
|
48 |
+
print(pd.DataFrame.from_dict(data))
|
49 |
+
return pd.DataFrame.from_dict(data)
|
50 |
+
|
51 |
+
# gradio_app = gr.Interface(
|
52 |
+
# predict,
|
53 |
+
# inputs=["text", "text",
|
54 |
+
# gr.Image(label="Select Image", sources=['upload', 'webcam'], type="pil"),
|
55 |
+
# ],
|
56 |
+
# outputs=gr.BarPlot(x="label",
|
57 |
+
# y="score",
|
58 |
+
# title="CLIP Score and Debiased Score",
|
59 |
+
# vertical=False,
|
60 |
+
# x_title=None
|
61 |
+
# ),
|
62 |
+
# title="Parrot Bias in CLIP!! (Both CLIP models are ViT-B-32)",
|
63 |
+
# )
|
64 |
+
with gr.Blocks() as demo:
|
65 |
+
gr.Markdown("# Parrot Bias in CLIP!! (Both CLIP models are ViT-B-32)")
|
66 |
+
with gr.Row():
|
67 |
+
im = gr.Image(label="Select Image",
|
68 |
+
sources=['upload', 'webcam'],
|
69 |
+
type="pil",
|
70 |
+
height=450)
|
71 |
+
with gr.Row():
|
72 |
+
txt_1 = gr.Textbox(label="Input Text")
|
73 |
+
txt_2 = gr.Textbox(label="Input Text 2")
|
74 |
+
bar = gr.BarPlot(x="label", y="score",
|
75 |
+
title="CLIP Score and Debiased Score",
|
76 |
+
vertical=False, x_title=None)
|
77 |
+
btn = gr.Button(value="Submit")
|
78 |
+
btn.click(predict, inputs=[txt_1, txt_2, im], outputs=[bar])
|
79 |
+
|
80 |
+
gr.Markdown("## Examples (from https://joaanna.github.io/disentangling_spelling_in_clip/)")
|
81 |
+
gr.Examples(
|
82 |
+
[["A mug cup", "An iPad",os.path.join(os.path.dirname(__file__), "examples/IMG_2938.jpg")],
|
83 |
+
["A hat", "bad",os.path.join(os.path.dirname(__file__), "examples/IMG_3066.jpg")]],
|
84 |
+
[txt_1, txt_2, im],
|
85 |
+
fn=predict,
|
86 |
+
outputs=bar,
|
87 |
+
cache_examples=True,
|
88 |
+
)
|
89 |
+
|
90 |
+
if __name__ == "__main__":
|
91 |
+
demo.launch(show_api=False,share=True)
|
debiased_openclip.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:275df1f6c23201b78f9cce5a4e319182a403364772a0ce6c9be5895a04070186
|
3 |
+
size 1815703758
|
open_clip_pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bd3c7172de5b207ceac554f5ab5266166f3b9baccc9af5989bc801016d080ad
|
3 |
+
size 605219813
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
open_clip_torch
|
2 |
+
gradio
|