Update custom_llm.py
Browse files- custom_llm.py +6 -11
custom_llm.py
CHANGED
@@ -31,14 +31,14 @@ import pickle, asyncio
|
|
31 |
async def create_vectorstore():
|
32 |
API_TOKEN = os.getenv('HF_INFER_API')
|
33 |
|
34 |
-
loader = os.getenv('knowledge_base')
|
35 |
# web_loader = load_web("https://lintasmediadanawa.com")
|
36 |
|
37 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=20)
|
38 |
|
39 |
# docs = splitter.create_documents([loader]+web_loader)
|
40 |
-
docs = splitter.create_documents([loader])
|
41 |
-
print(len(docs))
|
42 |
emb_model = HuggingFaceEmbeddings(model_name='sentence-transformers/paraphrase-multilingual-mpnet-base-v2', encode_kwargs={'normalize_embeddings': True})
|
43 |
|
44 |
# emb_model = HuggingFaceInferenceAPIEmbeddings(
|
@@ -48,18 +48,13 @@ async def create_vectorstore():
|
|
48 |
async def add_docs(d):
|
49 |
db.aadd_documents(await splitter.atransform_documents([d]))
|
50 |
|
51 |
-
db =
|
52 |
|
53 |
f = pickle.load(open("ebesha_ticket.pkl", "rb"))
|
54 |
|
55 |
print("Docs len :", len(f))
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
for d in f:
|
60 |
-
tasks.append(db.aadd_documents(await splitter.atransform_documents([d])))
|
61 |
-
|
62 |
-
await asyncio.gather(*tasks)
|
63 |
|
64 |
|
65 |
|
|
|
31 |
async def create_vectorstore():
|
32 |
API_TOKEN = os.getenv('HF_INFER_API')
|
33 |
|
34 |
+
# loader = os.getenv('knowledge_base')
|
35 |
# web_loader = load_web("https://lintasmediadanawa.com")
|
36 |
|
37 |
+
# splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=20)
|
38 |
|
39 |
# docs = splitter.create_documents([loader]+web_loader)
|
40 |
+
# docs = splitter.create_documents([loader])
|
41 |
+
# print(len(docs))
|
42 |
emb_model = HuggingFaceEmbeddings(model_name='sentence-transformers/paraphrase-multilingual-mpnet-base-v2', encode_kwargs={'normalize_embeddings': True})
|
43 |
|
44 |
# emb_model = HuggingFaceInferenceAPIEmbeddings(
|
|
|
48 |
async def add_docs(d):
|
49 |
db.aadd_documents(await splitter.atransform_documents([d]))
|
50 |
|
51 |
+
# db = FAISS.afrom_documents(docs, emb_model)
|
52 |
|
53 |
f = pickle.load(open("ebesha_ticket.pkl", "rb"))
|
54 |
|
55 |
print("Docs len :", len(f))
|
56 |
|
57 |
+
db = FAISS.from_documents(f, emb_model)
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
|