Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
from diffusers import FluxPriorReduxPipeline, FluxPipeline
|
| 5 |
+
from diffusers.utils import load_image
|
| 6 |
+
import spaces
|
| 7 |
+
|
| 8 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 9 |
+
MAX_IMAGE_SIZE = 2048
|
| 10 |
+
|
| 11 |
+
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(
|
| 12 |
+
"black-forest-labs/FLUX.1-Redux-dev",
|
| 13 |
+
revision="refs/pr/8",
|
| 14 |
+
torch_dtype=torch.bfloat16
|
| 15 |
+
).to("cuda")
|
| 16 |
+
|
| 17 |
+
pipe = FluxPipeline.from_pretrained(
|
| 18 |
+
"black-forest-labs/FLUX.1-dev" ,
|
| 19 |
+
text_encoder=None,
|
| 20 |
+
text_encoder_2=None,
|
| 21 |
+
torch_dtype=torch.bfloat16
|
| 22 |
+
).to("cuda")
|
| 23 |
+
|
| 24 |
+
@spaces.GPU
|
| 25 |
+
def infer(control_image, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
| 26 |
+
pipe_prior_output = pipe_prior_redux(control_image)
|
| 27 |
+
images = pipe(
|
| 28 |
+
guidance_scale=guidance_scale,
|
| 29 |
+
num_inference_steps=num_inference_steps,
|
| 30 |
+
generator=torch.Generator("cpu").manual_seed(seed),
|
| 31 |
+
**pipe_prior_output,
|
| 32 |
+
).images[0]
|
| 33 |
+
return images
|
| 34 |
+
css="""
|
| 35 |
+
#col-container {
|
| 36 |
+
margin: 0 auto;
|
| 37 |
+
max-width: 520px;
|
| 38 |
+
}
|
| 39 |
+
"""
|
| 40 |
+
|
| 41 |
+
with gr.Blocks(css=css) as demo:
|
| 42 |
+
|
| 43 |
+
with gr.Column(elem_id="col-container"):
|
| 44 |
+
gr.Markdown(f"""# FLUX.1 Redux [dev]
|
| 45 |
+
An adapter for FLUX [dev] to create image variations
|
| 46 |
+
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
|
| 47 |
+
""")
|
| 48 |
+
|
| 49 |
+
input_image = gr.Image(label="Image to create variations")
|
| 50 |
+
run_button = gr.Button("Run")
|
| 51 |
+
|
| 52 |
+
result = gr.Image(label="Result", show_label=False)
|
| 53 |
+
|
| 54 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 55 |
+
|
| 56 |
+
seed = gr.Slider(
|
| 57 |
+
label="Seed",
|
| 58 |
+
minimum=0,
|
| 59 |
+
maximum=MAX_SEED,
|
| 60 |
+
step=1,
|
| 61 |
+
value=0,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 65 |
+
|
| 66 |
+
with gr.Row():
|
| 67 |
+
|
| 68 |
+
width = gr.Slider(
|
| 69 |
+
label="Width",
|
| 70 |
+
minimum=256,
|
| 71 |
+
maximum=MAX_IMAGE_SIZE,
|
| 72 |
+
step=32,
|
| 73 |
+
value=1024,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
height = gr.Slider(
|
| 77 |
+
label="Height",
|
| 78 |
+
minimum=256,
|
| 79 |
+
maximum=MAX_IMAGE_SIZE,
|
| 80 |
+
step=32,
|
| 81 |
+
value=1024,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
with gr.Row():
|
| 85 |
+
|
| 86 |
+
guidance_scale = gr.Slider(
|
| 87 |
+
label="Guidance Scale",
|
| 88 |
+
minimum=1,
|
| 89 |
+
maximum=15,
|
| 90 |
+
step=0.1,
|
| 91 |
+
value=3.5,
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
num_inference_steps = gr.Slider(
|
| 95 |
+
label="Number of inference steps",
|
| 96 |
+
minimum=1,
|
| 97 |
+
maximum=50,
|
| 98 |
+
step=1,
|
| 99 |
+
value=28,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
gr.on(
|
| 103 |
+
triggers=[run_button.click],
|
| 104 |
+
fn = infer,
|
| 105 |
+
inputs = [input_image, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
| 106 |
+
outputs = [result, seed]
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
demo.launch()
|