Spaces:
Running
on
A10G
Running
on
A10G
Linoy Tsaban
commited on
Commit
·
0d84727
1
Parent(s):
c37a174
Update app.py
Browse files
app.py
CHANGED
|
@@ -78,86 +78,28 @@ def edit(input_image,
|
|
| 78 |
cfg_scale_src = 3.5,
|
| 79 |
cfg_scale_tar = 15,
|
| 80 |
skip=36,
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
bottom = 0
|
| 86 |
):
|
| 87 |
torch.manual_seed(seed)
|
| 88 |
# offsets=(0,0,0,0)
|
| 89 |
x0 = load_512(input_image, left,right, top, bottom, device)
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
# #
|
| 96 |
-
# xT=wts[skip]
|
| 97 |
-
# etas=1.0
|
| 98 |
-
# prompts=[tar_prompt]
|
| 99 |
-
# cfg_scales=[cfg_scale_tar]
|
| 100 |
-
# prog_bar=False
|
| 101 |
-
# zs=zs[skip:]
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
# batch_size = len(prompts)
|
| 105 |
-
|
| 106 |
-
# cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1,1,1,1).to(sd_pipe.device)
|
| 107 |
-
|
| 108 |
-
# text_embeddings = encode_text(sd_pipe, prompts)
|
| 109 |
-
# uncond_embedding = encode_text(sd_pipe, [""] * batch_size)
|
| 110 |
-
|
| 111 |
-
# if etas is None: etas = 0
|
| 112 |
-
# if type(etas) in [int, float]: etas = [etas]*sd_pipe.scheduler.num_inference_steps
|
| 113 |
-
# assert len(etas) == sd_pipe.scheduler.num_inference_steps
|
| 114 |
-
# timesteps = sd_pipe.scheduler.timesteps.to(sd_pipe.device)
|
| 115 |
-
|
| 116 |
-
# xt = xT.expand(batch_size, -1, -1, -1)
|
| 117 |
-
# op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:]
|
| 118 |
-
|
| 119 |
-
# t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
|
| 120 |
-
|
| 121 |
-
# for t in op:
|
| 122 |
-
# idx = t_to_idx[int(t)]
|
| 123 |
-
# ## Unconditional embedding
|
| 124 |
-
# with torch.no_grad():
|
| 125 |
-
# uncond_out = sd_pipe.unet.forward(xt, timestep = t,
|
| 126 |
-
# encoder_hidden_states = uncond_embedding)
|
| 127 |
-
|
| 128 |
-
# ## Conditional embedding
|
| 129 |
-
# if prompts:
|
| 130 |
-
# with torch.no_grad():
|
| 131 |
-
# cond_out = sd_pipe.unet.forward(xt, timestep = t,
|
| 132 |
-
# encoder_hidden_states = text_embeddings)
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
# z = zs[idx] if not zs is None else None
|
| 136 |
-
# z = z.expand(batch_size, -1, -1, -1)
|
| 137 |
-
# if prompts:
|
| 138 |
-
# ## classifier free guidance
|
| 139 |
-
# noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample)
|
| 140 |
-
# else:
|
| 141 |
-
# noise_pred = uncond_out.sample
|
| 142 |
-
# # 2. compute less noisy image and set x_t -> x_t-1
|
| 143 |
-
# xt = reverse_step(sd_pipe, noise_pred, t, xt, eta = etas[idx], variance_noise = z)
|
| 144 |
-
|
| 145 |
-
# # interm denoised img
|
| 146 |
-
# with autocast("cuda"), inference_mode():
|
| 147 |
-
# x0_dec = sd_pipe.vae.decode(1 / 0.18215 * xt).sample
|
| 148 |
-
# if x0_dec.dim()<4:
|
| 149 |
-
# x0_dec = x0_dec[None,:,:,:]
|
| 150 |
-
# interm_img = image_grid(x0_dec)
|
| 151 |
-
# yield interm_img
|
| 152 |
-
|
| 153 |
-
# yield interm_img
|
| 154 |
|
| 155 |
-
|
| 156 |
output = sample(wt, zs, wts, prompt_tar=tar_prompt, cfg_scale_tar=cfg_scale_tar, skip=skip)
|
| 157 |
|
| 158 |
return output
|
| 159 |
|
| 160 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
|
| 163 |
|
|
@@ -180,7 +122,9 @@ For faster inference without waiting in queue, you may duplicate the space and u
|
|
| 180 |
<p/>"""
|
| 181 |
with gr.Blocks() as demo:
|
| 182 |
gr.HTML(intro)
|
| 183 |
-
|
|
|
|
|
|
|
| 184 |
with gr.Row():
|
| 185 |
input_image = gr.Image(label="Input Image", interactive=True)
|
| 186 |
input_image.style(height=512, width=512)
|
|
@@ -188,7 +132,7 @@ with gr.Blocks() as demo:
|
|
| 188 |
# inverted_image.style(height=512, width=512)
|
| 189 |
output_image = gr.Image(label=f"Edited Image", interactive=False)
|
| 190 |
output_image.style(height=512, width=512)
|
| 191 |
-
|
| 192 |
|
| 193 |
with gr.Row():
|
| 194 |
# with gr.Column(scale=1, min_width=100):
|
|
@@ -214,14 +158,6 @@ with gr.Blocks() as demo:
|
|
| 214 |
skip = gr.Slider(minimum=0, maximum=40, value=36, precision=0, label="Skip Steps", interactive=True)
|
| 215 |
cfg_scale_tar = gr.Slider(minimum=7, maximum=18,value=15, label=f"Target Guidance Scale", interactive=True)
|
| 216 |
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
|
| 217 |
-
|
| 218 |
-
#shift
|
| 219 |
-
with gr.Column():
|
| 220 |
-
left = gr.Number(value=0, precision=0, label="Left Shift", interactive=True)
|
| 221 |
-
right = gr.Number(value=0, precision=0, label="Right Shift", interactive=True)
|
| 222 |
-
top = gr.Number(value=0, precision=0, label="Top Shift", interactive=True)
|
| 223 |
-
bottom = gr.Number(value=0, precision=0, label="Bottom Shift", interactive=True)
|
| 224 |
-
|
| 225 |
|
| 226 |
|
| 227 |
|
|
@@ -255,14 +191,16 @@ with gr.Blocks() as demo:
|
|
| 255 |
cfg_scale_tar,
|
| 256 |
skip,
|
| 257 |
seed,
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
top,
|
| 261 |
-
bottom
|
| 262 |
],
|
| 263 |
outputs=[output_image],
|
| 264 |
)
|
| 265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
gr.Examples(
|
| 268 |
label='Examples',
|
|
|
|
| 78 |
cfg_scale_src = 3.5,
|
| 79 |
cfg_scale_tar = 15,
|
| 80 |
skip=36,
|
| 81 |
+
wt = None,
|
| 82 |
+
zs = None,
|
| 83 |
+
wts = None
|
| 84 |
+
|
|
|
|
| 85 |
):
|
| 86 |
torch.manual_seed(seed)
|
| 87 |
# offsets=(0,0,0,0)
|
| 88 |
x0 = load_512(input_image, left,right, top, bottom, device)
|
| 89 |
|
| 90 |
+
if not wt:
|
| 91 |
+
# invert and retrieve noise maps and latent
|
| 92 |
+
wt, zs, wts = invert(x0 =x0 , prompt_src=src_prompt, num_diffusion_steps=steps, cfg_scale_src=cfg_scale_src)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
|
|
|
| 94 |
output = sample(wt, zs, wts, prompt_tar=tar_prompt, cfg_scale_tar=cfg_scale_tar, skip=skip)
|
| 95 |
|
| 96 |
return output
|
| 97 |
|
| 98 |
|
| 99 |
+
def reset_latents():
|
| 100 |
+
wt = gr.State(value=None)
|
| 101 |
+
zs = gr.State(value=None)
|
| 102 |
+
wts = gr.State(value=None)
|
| 103 |
|
| 104 |
|
| 105 |
|
|
|
|
| 122 |
<p/>"""
|
| 123 |
with gr.Blocks() as demo:
|
| 124 |
gr.HTML(intro)
|
| 125 |
+
wt = gr.State(value=None)
|
| 126 |
+
zs = gr.State(value=None)
|
| 127 |
+
wts = gr.State(value=None)
|
| 128 |
with gr.Row():
|
| 129 |
input_image = gr.Image(label="Input Image", interactive=True)
|
| 130 |
input_image.style(height=512, width=512)
|
|
|
|
| 132 |
# inverted_image.style(height=512, width=512)
|
| 133 |
output_image = gr.Image(label=f"Edited Image", interactive=False)
|
| 134 |
output_image.style(height=512, width=512)
|
| 135 |
+
|
| 136 |
|
| 137 |
with gr.Row():
|
| 138 |
# with gr.Column(scale=1, min_width=100):
|
|
|
|
| 158 |
skip = gr.Slider(minimum=0, maximum=40, value=36, precision=0, label="Skip Steps", interactive=True)
|
| 159 |
cfg_scale_tar = gr.Slider(minimum=7, maximum=18,value=15, label=f"Target Guidance Scale", interactive=True)
|
| 160 |
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
|
| 163 |
|
|
|
|
| 191 |
cfg_scale_tar,
|
| 192 |
skip,
|
| 193 |
seed,
|
| 194 |
+
new_inversion,
|
| 195 |
+
|
|
|
|
|
|
|
| 196 |
],
|
| 197 |
outputs=[output_image],
|
| 198 |
)
|
| 199 |
|
| 200 |
+
input_image.change(
|
| 201 |
+
fn = reset_latents
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
|
| 205 |
gr.Examples(
|
| 206 |
label='Examples',
|