Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -8,6 +8,7 @@ import os | |
| 8 | 
             
            # from diffusers import QwenImageEditInpaintPipeline
         | 
| 9 | 
             
            from optimization import optimize_pipeline_
         | 
| 10 | 
             
            from diffusers.utils import load_image
         | 
|  | |
| 11 | 
             
            from qwenimage.pipeline_qwenimage_edit_inpaint import QwenImageEditInpaintPipeline
         | 
| 12 | 
             
            from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
         | 
| 13 | 
             
            from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
         | 
| @@ -21,14 +22,44 @@ MAX_SEED = np.iinfo(np.int32).max | |
| 21 | 
             
            MAX_IMAGE_SIZE = 2048
         | 
| 22 |  | 
| 23 | 
             
            # Initialize Qwen Image Edit pipeline
         | 
| 24 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 25 | 
             
            pipe.transformer.__class__ = QwenImageTransformer2DModel
         | 
| 26 | 
             
            pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
         | 
| 27 |  | 
| 28 | 
            -
            dummy_mask  = load_image("https://github.com/Trgtuan10/Image_storage/blob/main/mask_cat.png?raw=true")
         | 
| 29 |  | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
|  | |
|  | |
|  | |
| 32 |  | 
| 33 | 
             
            @spaces.GPU(duration=120)
         | 
| 34 | 
             
            def infer(edit_images, prompt, negative_prompt="", seed=42, randomize_seed=False, strength=1.0, num_inference_steps=35, true_cfg_scale=4.0, progress=gr.Progress(track_tqdm=True)):
         | 
| @@ -138,16 +169,16 @@ with gr.Blocks(css=css) as demo: | |
| 138 | 
             
                                minimum=1.0,
         | 
| 139 | 
             
                                maximum=20.0,
         | 
| 140 | 
             
                                step=0.5,
         | 
| 141 | 
            -
                                value= | 
| 142 | 
             
                                info="Classifier-free guidance scale"
         | 
| 143 | 
             
                            )
         | 
| 144 |  | 
| 145 | 
             
                            num_inference_steps = gr.Slider(
         | 
| 146 | 
             
                                label="Number of inference steps",
         | 
| 147 | 
             
                                minimum=10,
         | 
| 148 | 
            -
                                maximum= | 
| 149 | 
             
                                step=1,
         | 
| 150 | 
            -
                                value= | 
| 151 | 
             
                            )
         | 
| 152 |  | 
| 153 | 
             
                gr.on(
         | 
|  | |
| 8 | 
             
            # from diffusers import QwenImageEditInpaintPipeline
         | 
| 9 | 
             
            from optimization import optimize_pipeline_
         | 
| 10 | 
             
            from diffusers.utils import load_image
         | 
| 11 | 
            +
            from diffusers import FlowMatchEulerDiscreteScheduler
         | 
| 12 | 
             
            from qwenimage.pipeline_qwenimage_edit_inpaint import QwenImageEditInpaintPipeline
         | 
| 13 | 
             
            from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
         | 
| 14 | 
             
            from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
         | 
|  | |
| 22 | 
             
            MAX_IMAGE_SIZE = 2048
         | 
| 23 |  | 
| 24 | 
             
            # Initialize Qwen Image Edit pipeline
         | 
| 25 | 
            +
            # Scheduler configuration for Lightning
         | 
| 26 | 
            +
            scheduler_config = {
         | 
| 27 | 
            +
                "base_image_seq_len": 256,
         | 
| 28 | 
            +
                "base_shift": math.log(3),
         | 
| 29 | 
            +
                "invert_sigmas": False,
         | 
| 30 | 
            +
                "max_image_seq_len": 8192,
         | 
| 31 | 
            +
                "max_shift": math.log(3),
         | 
| 32 | 
            +
                "num_train_timesteps": 1000,
         | 
| 33 | 
            +
                "shift": 1.0,
         | 
| 34 | 
            +
                "shift_terminal": None,
         | 
| 35 | 
            +
                "stochastic_sampling": False,
         | 
| 36 | 
            +
                "time_shift_type": "exponential",
         | 
| 37 | 
            +
                "use_beta_sigmas": False,
         | 
| 38 | 
            +
                "use_dynamic_shifting": True,
         | 
| 39 | 
            +
                "use_exponential_sigmas": False,
         | 
| 40 | 
            +
                "use_karras_sigmas": False,
         | 
| 41 | 
            +
            }
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            # Initialize scheduler with Lightning config
         | 
| 44 | 
            +
            scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
             | 
| 47 | 
            +
            pipe = QwenImageEditInpaintPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler, torch_dtype=torch.bfloat16).to("cuda")
         | 
| 48 | 
            +
            pipe.load_lora_weights(
         | 
| 49 | 
            +
                    "lightx2v/Qwen-Image-Lightning", 
         | 
| 50 | 
            +
                    weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors"
         | 
| 51 | 
            +
                )
         | 
| 52 | 
            +
            pipe.fuse_lora()
         | 
| 53 | 
            +
             | 
| 54 | 
             
            pipe.transformer.__class__ = QwenImageTransformer2DModel
         | 
| 55 | 
             
            pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
         | 
| 56 |  | 
|  | |
| 57 |  | 
| 58 | 
            +
             | 
| 59 | 
            +
            # dummy_mask  = load_image("https://github.com/Trgtuan10/Image_storage/blob/main/mask_cat.png?raw=true")
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            # # --- Ahead-of-time compilation ---
         | 
| 62 | 
            +
            # optimize_pipeline_(pipe, image=Image.new("RGB", (1328, 1328)), prompt="prompt", mask_image=dummy_mask)
         | 
| 63 |  | 
| 64 | 
             
            @spaces.GPU(duration=120)
         | 
| 65 | 
             
            def infer(edit_images, prompt, negative_prompt="", seed=42, randomize_seed=False, strength=1.0, num_inference_steps=35, true_cfg_scale=4.0, progress=gr.Progress(track_tqdm=True)):
         | 
|  | |
| 169 | 
             
                                minimum=1.0,
         | 
| 170 | 
             
                                maximum=20.0,
         | 
| 171 | 
             
                                step=0.5,
         | 
| 172 | 
            +
                                value=1.0,
         | 
| 173 | 
             
                                info="Classifier-free guidance scale"
         | 
| 174 | 
             
                            )
         | 
| 175 |  | 
| 176 | 
             
                            num_inference_steps = gr.Slider(
         | 
| 177 | 
             
                                label="Number of inference steps",
         | 
| 178 | 
             
                                minimum=10,
         | 
| 179 | 
            +
                                maximum=50,
         | 
| 180 | 
             
                                step=1,
         | 
| 181 | 
            +
                                value=8,
         | 
| 182 | 
             
                            )
         | 
| 183 |  | 
| 184 | 
             
                gr.on(
         | 
