Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import random | |
| import os | |
| # from diffusers import QwenImageEditInpaintPipeline | |
| from optimization import optimize_pipeline_ | |
| from diffusers.utils import load_image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from qwenimage.pipeline_qwenimage_edit_inpaint import QwenImageEditInpaintPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import math | |
| from huggingface_hub import InferenceClient | |
| from PIL import Image | |
| # Set environment variable for parallel loading | |
| # os.environ["HF_ENABLE_PARALLEL_LOADING"] = "YES" | |
| # --- Prompt Enhancement using Hugging Face InferenceClient --- | |
| def polish_prompt_hf(original_prompt, system_prompt): | |
| """ | |
| Rewrites the prompt using a Hugging Face InferenceClient. | |
| """ | |
| # Ensure HF_TOKEN is set | |
| api_key = os.environ.get("HF_TOKEN") | |
| if not api_key: | |
| print("Warning: HF_TOKEN not set. Falling back to original prompt.") | |
| return original_prompt | |
| try: | |
| # Initialize the client | |
| client = InferenceClient( | |
| provider="cerebras", | |
| api_key=api_key, | |
| ) | |
| # Format the messages for the chat completions API | |
| messages = [ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": original_prompt} | |
| ] | |
| # Call the API | |
| completion = client.chat.completions.create( | |
| model="Qwen/Qwen3-235B-A22B-Instruct-2507", | |
| messages=messages, | |
| ) | |
| # Parse the response | |
| result = completion.choices[0].message.content | |
| # Try to extract JSON if present | |
| if '{"Rewritten"' in result: | |
| try: | |
| # Clean up the response | |
| result = result.replace('```json', '').replace('```', '') | |
| result_json = json.loads(result) | |
| polished_prompt = result_json.get('Rewritten', result) | |
| except: | |
| polished_prompt = result | |
| else: | |
| polished_prompt = result | |
| polished_prompt = polished_prompt.strip().replace("\n", " ") | |
| return polished_prompt | |
| except Exception as e: | |
| print(f"Error during API call to Hugging Face: {e}") | |
| # Fallback to original prompt if enhancement fails | |
| return original_prompt | |
| def polish_prompt(prompt, img): | |
| """ | |
| Main function to polish prompts for image editing using HF inference. | |
| """ | |
| SYSTEM_PROMPT = ''' | |
| # Edit Instruction Rewriter | |
| You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited. | |
| Please strictly follow the rewriting rules below: | |
| ## 1. General Principles | |
| - Keep the rewritten prompt **concise**. Avoid overly long sentences and reduce unnecessary descriptive language. | |
| - If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary. | |
| - Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility. | |
| - All added objects or modifications must align with the logic and style of the edited input image's overall scene. | |
| ## 2. Task Type Handling Rules | |
| ### 1. Add, Delete, Replace Tasks | |
| - If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar. | |
| - If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example: | |
| > Original: "Add an animal" | |
| > Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera" | |
| - Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid. | |
| - For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X. | |
| ### 2. Text Editing Tasks | |
| - All text content must be enclosed in English double quotes " ". Do not translate or alter the original language of the text, and do not change the capitalization. | |
| - **For text replacement tasks, always use the fixed template:** | |
| - Replace "xx" to "yy". | |
| - Replace the xx bounding box to "yy". | |
| - If the user does not specify text content, infer and add concise text based on the instruction and the input image's context. For example: | |
| > Original: "Add a line of text" (poster) | |
| > Rewritten: "Add text "LIMITED EDITION" at the top center with slight shadow" | |
| - Specify text position, color, and layout in a concise way. | |
| ### 3. Human Editing Tasks | |
| - Maintain the person's core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.). | |
| - If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style. | |
| - **For expression changes, they must be natural and subtle, never exaggerated.** | |
| - If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved. | |
| - For background change tasks, emphasize maintaining subject consistency at first. | |
| - Example: | |
| > Original: "Change the person's hat" | |
| > Rewritten: "Replace the man's hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged" | |
| ### 4. Style Transformation or Enhancement Tasks | |
| - If a style is specified, describe it concisely with key visual traits. For example: | |
| > Original: "Disco style" | |
| > Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones" | |
| - If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely. | |
| - **For coloring tasks, including restoring old photos, always use the fixed template:** "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration" | |
| - If there are other changes, place the style description at the end. | |
| ## 3. Rationality and Logic Checks | |
| - Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected. | |
| - Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges). | |
| # Output Format | |
| Return only the rewritten instruction text directly, without JSON formatting or any other wrapper. | |
| ''' | |
| # Note: We're not actually using the image in the HF version, | |
| # but keeping the interface consistent | |
| full_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:" | |
| return polish_prompt_hf(full_prompt, SYSTEM_PROMPT) | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 2048 | |
| # --- Helper functions for reuse feature --- | |
| def clear_result(): | |
| """Clears the result image.""" | |
| return gr.update(value=None) | |
| def use_output_as_input(output_image): | |
| """Sets the generated output as the new input image.""" | |
| if output_image is not None: | |
| return gr.update(value=output_image[1]) | |
| return gr.update() | |
| # Initialize Qwen Image Edit pipeline | |
| # Scheduler configuration for Lightning | |
| scheduler_config = { | |
| "base_image_seq_len": 256, | |
| "base_shift": math.log(3), | |
| "invert_sigmas": False, | |
| "max_image_seq_len": 8192, | |
| "max_shift": math.log(3), | |
| "num_train_timesteps": 1000, | |
| "shift": 1.0, | |
| "shift_terminal": None, | |
| "stochastic_sampling": False, | |
| "time_shift_type": "exponential", | |
| "use_beta_sigmas": False, | |
| "use_dynamic_shifting": True, | |
| "use_exponential_sigmas": False, | |
| "use_karras_sigmas": False, | |
| } | |
| # Initialize scheduler with Lightning config | |
| scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) | |
| pipe = QwenImageEditInpaintPipeline.from_pretrained("Qwen/Qwen-Image-Edit", scheduler=scheduler, torch_dtype=torch.bfloat16).to("cuda") | |
| pipe.load_lora_weights( | |
| "lightx2v/Qwen-Image-Lightning", | |
| weight_name="Qwen-Image-Lightning-8steps-V1.1.safetensors" | |
| ) | |
| pipe.fuse_lora() | |
| # pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| # dummy_mask = load_image("https://github.com/Trgtuan10/Image_storage/blob/main/mask_cat.png?raw=true") | |
| # # --- Ahead-of-time compilation --- | |
| # optimize_pipeline_(pipe, image=Image.new("RGB", (1328, 1328)), prompt="prompt", mask_image=dummy_mask) | |
| def infer(edit_images, | |
| prompt, | |
| negative_prompt="", | |
| seed=42, | |
| randomize_seed=False, | |
| strength=1.0, | |
| num_inference_steps=8, | |
| true_cfg_scale=1.0, | |
| rewrite_prompt=True, | |
| progress=gr.Progress(track_tqdm=True)): | |
| image = edit_images["background"] | |
| mask = edit_images["layers"][0] | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| if rewrite_prompt: | |
| prompt = polish_prompt(prompt, image) | |
| print(f"Rewritten Prompt: {prompt}") | |
| # Generate image using Qwen pipeline | |
| result_image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| image=image, | |
| mask_image=mask, | |
| strength=strength, | |
| num_inference_steps=num_inference_steps, | |
| true_cfg_scale=true_cfg_scale, | |
| generator=torch.Generator(device="cuda").manual_seed(seed) | |
| ).images[0] | |
| return [image,result_image], seed | |
| examples = [ | |
| "change the hat to red", | |
| "make the background a beautiful sunset", | |
| "replace the object with a flower vase", | |
| ] | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 1024px; | |
| } | |
| #logo-title { | |
| text-align: center; | |
| } | |
| #logo-title img { | |
| width: 400px; | |
| } | |
| #edit_text{margin-top: -62px !important} | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.HTML(""" | |
| <div id="logo-title"> | |
| <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;"> | |
| <h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 133px;">Inpaint</h2> | |
| </div> | |
| """) | |
| gr.Markdown(""" | |
| Inpaint images with Qwen Image Edit. [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. | |
| This demo uses the [Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA with FA3 for accelerated 8-step inference. | |
| Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers. | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| edit_image = gr.ImageEditor( | |
| label='Upload and draw mask for inpainting', | |
| type='pil', | |
| sources=["upload", "webcam"], | |
| image_mode='RGB', | |
| layers=False, | |
| brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"), | |
| height=600 | |
| ) | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt (e.g., 'change the hat to red')", | |
| container=False, | |
| ) | |
| negative_prompt = gr.Text( | |
| label="Negative Prompt", | |
| show_label=True, | |
| max_lines=1, | |
| placeholder="Enter what you don't want (optional)", | |
| container=False, | |
| value="", | |
| visible=False | |
| ) | |
| run_button = gr.Button("Run") | |
| with gr.Column(): | |
| result = gr.ImageSlider(label="Result", show_label=False, interactive=False) | |
| use_as_input_button = gr.Button("🔄 Use as Input Image", visible=False, variant="secondary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=42, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| strength = gr.Slider( | |
| label="Strength", | |
| minimum=0.0, | |
| maximum=1.0, | |
| step=0.1, | |
| value=1.0, | |
| info="Controls how much the inpainted region should change" | |
| ) | |
| true_cfg_scale = gr.Slider( | |
| label="True CFG Scale", | |
| minimum=1.0, | |
| maximum=10.0, | |
| step=0.5, | |
| value=1.0, | |
| info="Classifier-free guidance scale" | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=50, | |
| step=1, | |
| value=8, | |
| ) | |
| rewrite_prompt = gr.Checkbox( | |
| label="Enhance prompt (using HF Inference)", | |
| value=True | |
| ) | |
| # Event handlers for reuse functionality | |
| use_as_input_button.click( | |
| fn=use_output_as_input, | |
| inputs=[result], | |
| outputs=[edit_image], | |
| show_api=False | |
| ) | |
| # Main generation pipeline with result clearing and button visibility | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=clear_result, | |
| inputs=None, | |
| outputs=result, | |
| show_api=False | |
| ).then( | |
| fn = infer, | |
| inputs = [edit_image, prompt, negative_prompt, seed, randomize_seed, strength, num_inference_steps, true_cfg_scale, rewrite_prompt], | |
| outputs = [result, seed] | |
| ).then( | |
| fn=lambda: gr.update(visible=True), | |
| inputs=None, | |
| outputs=use_as_input_button, | |
| show_api=False | |
| ) | |
| demo.launch() |