Create cijiang/rhyme.py
Browse files- cijiang/rhyme.py +240 -0
cijiang/rhyme.py
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
from collections import namedtuple
|
| 6 |
+
from typing import List, Tuple, Dict
|
| 7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 8 |
+
from pypinyin import pinyin, Style
|
| 9 |
+
|
| 10 |
+
BeamEntry = namedtuple('BeamEntry', ['sequence', 'log_prob', 'position'])
|
| 11 |
+
|
| 12 |
+
def is_pinyin(syllable):
|
| 13 |
+
"""Check if a syllable is a valid pinyin syllable"""
|
| 14 |
+
try:
|
| 15 |
+
syllable.encode('ascii')
|
| 16 |
+
except UnicodeEncodeError:
|
| 17 |
+
return False
|
| 18 |
+
return True
|
| 19 |
+
|
| 20 |
+
class CiJiangRhymer:
|
| 21 |
+
def __init__(self, strict=True, tone=True, heteronym=False):
|
| 22 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 23 |
+
self._load_model()
|
| 24 |
+
self._load_rules()
|
| 25 |
+
self.tone = tone
|
| 26 |
+
self.heteronym = heteronym
|
| 27 |
+
if strict:
|
| 28 |
+
self.mode = 'strict'
|
| 29 |
+
else:
|
| 30 |
+
self.mode = 'blurry'
|
| 31 |
+
|
| 32 |
+
# Pre-compute character mappings for efficiency
|
| 33 |
+
self._build_character_cache()
|
| 34 |
+
|
| 35 |
+
def _load_model(self):
|
| 36 |
+
model_name = "Qwen/Qwen3-0.6B-Base" # Changed to base model
|
| 37 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 38 |
+
|
| 39 |
+
# Add padding token if it doesn't exist
|
| 40 |
+
if self.tokenizer.pad_token is None:
|
| 41 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 42 |
+
|
| 43 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 44 |
+
model_name,
|
| 45 |
+
torch_dtype="auto",
|
| 46 |
+
device_map="auto"
|
| 47 |
+
)
|
| 48 |
+
self.model.eval()
|
| 49 |
+
# Note: torch.compile may not work with all versions, comment out if issues
|
| 50 |
+
self.vocab = self.tokenizer.get_vocab()
|
| 51 |
+
|
| 52 |
+
def _load_rules(self):
|
| 53 |
+
with open('rules/syllable_to_yunmu.json', 'r', encoding='utf-8') as f:
|
| 54 |
+
self.syllable_to_yunmu = json.load(f)
|
| 55 |
+
|
| 56 |
+
with open('rules/ALL_SYLLABLES.txt', 'r', encoding='utf-8') as f:
|
| 57 |
+
all_syllables = f.read().strip().split()
|
| 58 |
+
self.all_syllables = [syllable for syllable in all_syllables if syllable]
|
| 59 |
+
|
| 60 |
+
with open('rules/rhymes.json', 'r', encoding='utf-8') as f:
|
| 61 |
+
self.rhymes = json.load(f)
|
| 62 |
+
|
| 63 |
+
def _build_character_cache(self):
|
| 64 |
+
"""Pre-compute character to pinyin mappings for all vocabulary tokens"""
|
| 65 |
+
print("Building character cache for faster lookup...")
|
| 66 |
+
self.char_to_pinyins = {}
|
| 67 |
+
self.token_to_char: Dict[int, str] = {}
|
| 68 |
+
|
| 69 |
+
for token_id in tqdm(range(len(self.vocab)), desc="Caching characters"):
|
| 70 |
+
char = self.tokenizer.decode(token_id).strip()
|
| 71 |
+
|
| 72 |
+
if len(char) == 1 and '\u4e00' <= char <= '\u9fff':
|
| 73 |
+
self.token_to_char[token_id] = char
|
| 74 |
+
|
| 75 |
+
# Cache pinyin for this character if not already done
|
| 76 |
+
if char not in self.char_to_pinyins:
|
| 77 |
+
hetero_pinyins = pinyin(char, style=Style.TONE3,
|
| 78 |
+
heteronym=True, neutral_tone_with_five=True)[0]
|
| 79 |
+
pinyins = pinyin(char, style=Style.TONE3,
|
| 80 |
+
heteronym=False, neutral_tone_with_five=True)[0]
|
| 81 |
+
self.char_to_pinyins[char] = {
|
| 82 |
+
"hetero": hetero_pinyins,
|
| 83 |
+
"single": pinyins
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
def _prefilter_tokens_by_rhyme(self, top_tokens: torch.Tensor, top_log_probs: torch.Tensor,
|
| 87 |
+
allowed_rhymes: set, target_tone: str) -> List[Tuple[str, float, int]]:
|
| 88 |
+
"""Pre-filter tokens that match rhyming requirements using cached data"""
|
| 89 |
+
matching_candidates = []
|
| 90 |
+
|
| 91 |
+
token_ids = top_tokens.to(torch.float32).cpu().numpy()
|
| 92 |
+
log_probs = top_log_probs.to(torch.float32).cpu().numpy()
|
| 93 |
+
|
| 94 |
+
for i, token_id in enumerate(token_ids):
|
| 95 |
+
char = self.token_to_char.get(int(token_id))
|
| 96 |
+
if char is None:
|
| 97 |
+
continue
|
| 98 |
+
|
| 99 |
+
candidate_pinyins = self.char_to_pinyins[char]["hetero" if self.heteronym else "single"]
|
| 100 |
+
|
| 101 |
+
for candidate_pinyin in candidate_pinyins:
|
| 102 |
+
if len(candidate_pinyin) < 2:
|
| 103 |
+
continue
|
| 104 |
+
|
| 105 |
+
candidate_syllable, candidate_tone = candidate_pinyin[:-1], candidate_pinyin[-1]
|
| 106 |
+
yunmu = self.syllable_to_yunmu.get(candidate_syllable)
|
| 107 |
+
|
| 108 |
+
if self.tone==False: candidate_tone = target_tone # Ignore tone if not required
|
| 109 |
+
|
| 110 |
+
if (yunmu in allowed_rhymes and
|
| 111 |
+
(candidate_tone == target_tone or target_tone == '5' or candidate_tone == '5')):
|
| 112 |
+
matching_candidates.append((char, float(log_probs[i]), int(token_id)))
|
| 113 |
+
break
|
| 114 |
+
|
| 115 |
+
return matching_candidates
|
| 116 |
+
|
| 117 |
+
def _get_next_token_probabilities(self, prompt: str, num_candidates: int = 200) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 118 |
+
"""Get probabilities for next token using base model"""
|
| 119 |
+
# Simplified approach for base model - no chat formatting needed
|
| 120 |
+
model_inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
| 121 |
+
|
| 122 |
+
with torch.inference_mode():
|
| 123 |
+
outputs = self.model(**model_inputs)
|
| 124 |
+
|
| 125 |
+
# Get logits for the next token (last position)
|
| 126 |
+
next_token_logits = outputs.logits[0, -1, :]
|
| 127 |
+
|
| 128 |
+
# Get top candidates
|
| 129 |
+
top_k_result = next_token_logits.topk(min(num_candidates, next_token_logits.size(0)))
|
| 130 |
+
top_tokens = top_k_result.indices
|
| 131 |
+
top_log_probs = torch.log_softmax(next_token_logits, dim=-1)[top_tokens]
|
| 132 |
+
|
| 133 |
+
return top_tokens, top_log_probs
|
| 134 |
+
|
| 135 |
+
def get_rhymes(self, text_with_placeholder: str, target_rhyme: str,
|
| 136 |
+
beam_width: int = 5, num_candidates: int = 200) -> List[Tuple[str, float]]:
|
| 137 |
+
"""
|
| 138 |
+
Generate rhyming text using Qwen3 base language model
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
text_with_placeholder: Text with placeholders (e.g., "恰似一江春水[M][M][M]")
|
| 142 |
+
target_rhyme: Target rhyme pattern
|
| 143 |
+
beam_width: Number of beams to maintain during search
|
| 144 |
+
num_candidates: Number of top candidates to consider at each step
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
List of (sequence, log_probability) tuples ranked by likelihood
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
if is_pinyin(target_rhyme):
|
| 151 |
+
target_rhyme_pinyin = target_rhyme.split(' ')
|
| 152 |
+
else:
|
| 153 |
+
target_rhyme_pinyin = [pinyin(rhyme, style=Style.TONE3, heteronym=False,
|
| 154 |
+
neutral_tone_with_five=True)[0][0] for rhyme in target_rhyme]
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
# print(f"Target rhyme pinyin: {target_rhyme_pinyin}")
|
| 158 |
+
# Count placeholders to replace
|
| 159 |
+
placeholder_count = text_with_placeholder.count('[M]')
|
| 160 |
+
if placeholder_count != len(target_rhyme_pinyin):
|
| 161 |
+
print(f"Warning: Number of placeholders ({placeholder_count}) doesn't match target rhyme length ({len(target_rhyme_pinyin)})")
|
| 162 |
+
|
| 163 |
+
# Initialize beam with the original sequence (remove placeholders for now)
|
| 164 |
+
base_text = text_with_placeholder.replace('[M]', '')
|
| 165 |
+
if len(base_text) == 0:
|
| 166 |
+
# add some base text if empty
|
| 167 |
+
base_text = "一个常见词汇是:"
|
| 168 |
+
beam = [BeamEntry(sequence=base_text, log_prob=0.0, position=0)]
|
| 169 |
+
|
| 170 |
+
# Process each character in the target rhyme
|
| 171 |
+
# for i in range(len(target_rhyme_pinyin)):
|
| 172 |
+
for i in tqdm(range(len(target_rhyme_pinyin)), desc="Generating rhymes"):
|
| 173 |
+
new_beam = []
|
| 174 |
+
syl = target_rhyme_pinyin[i]
|
| 175 |
+
syllable, tone = syl[:-1], syl[-1]
|
| 176 |
+
allowed_rhymes = set(self.rhymes.get(self.syllable_to_yunmu.get(syllable, None), {}).get(self.mode, []))
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
# Process each sequence in current beam
|
| 180 |
+
for beam_entry in beam:
|
| 181 |
+
current_sequence = beam_entry.sequence
|
| 182 |
+
current_log_prob = beam_entry.log_prob
|
| 183 |
+
|
| 184 |
+
# Create prompt for next character (simplified for base model)
|
| 185 |
+
prompt = current_sequence
|
| 186 |
+
|
| 187 |
+
# Get next token probabilities
|
| 188 |
+
try:
|
| 189 |
+
top_tokens, top_log_probs = self._get_next_token_probabilities(prompt, num_candidates)
|
| 190 |
+
except Exception as e:
|
| 191 |
+
print(f"Error getting probabilities: {e}")
|
| 192 |
+
continue
|
| 193 |
+
# print(current_sequence)
|
| 194 |
+
# Use optimized filtering
|
| 195 |
+
matching_candidates = self._prefilter_tokens_by_rhyme(
|
| 196 |
+
top_tokens, top_log_probs, allowed_rhymes, tone
|
| 197 |
+
)
|
| 198 |
+
# print(matching_candidates)
|
| 199 |
+
# Add matching candidates to new beam
|
| 200 |
+
for char, log_prob_value, token_id in matching_candidates:
|
| 201 |
+
new_sequence = current_sequence + char
|
| 202 |
+
new_beam.append(BeamEntry(
|
| 203 |
+
sequence=new_sequence,
|
| 204 |
+
log_prob=current_log_prob + log_prob_value,
|
| 205 |
+
position=i + 1
|
| 206 |
+
))
|
| 207 |
+
|
| 208 |
+
# Keep only top beam_width candidates
|
| 209 |
+
if new_beam:
|
| 210 |
+
new_beam.sort(key=lambda x: x.log_prob, reverse=True)
|
| 211 |
+
beam = new_beam[:beam_width]
|
| 212 |
+
else:
|
| 213 |
+
print(f"Warning: No valid candidates found for position {i} (syllable: {syl})")
|
| 214 |
+
break
|
| 215 |
+
|
| 216 |
+
# Return final results sorted by probability
|
| 217 |
+
if not beam:
|
| 218 |
+
return []
|
| 219 |
+
|
| 220 |
+
final_results = [(entry.sequence, np.exp(entry.log_prob/10)) for entry in beam]
|
| 221 |
+
final_results.sort(key=lambda x: x[1], reverse=True)
|
| 222 |
+
|
| 223 |
+
return final_results
|
| 224 |
+
|
| 225 |
+
# Example usage:
|
| 226 |
+
if __name__ == "__main__":
|
| 227 |
+
# Initialize the rhymer
|
| 228 |
+
rhymer = CiJiangRhymer(strict=False, tone=True)
|
| 229 |
+
|
| 230 |
+
# Example: Generate rhyming text
|
| 231 |
+
base_text = "��人给你[M][M][M][M]"
|
| 232 |
+
# target_rhyme = "摆摊算命" # Target rhyme pattern
|
| 233 |
+
target_rhyme = "bai3 tan1 suan4 ming4" # Pinyin representation for testing
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
results = rhymer.get_rhymes(base_text, target_rhyme, beam_width=10, num_candidates=5000)
|
| 237 |
+
|
| 238 |
+
print("Generated rhyming completions:")
|
| 239 |
+
for i, (sequence, prob) in enumerate(results):
|
| 240 |
+
print(f"{i+1}. {sequence} (probability: {prob:.4f})")
|