#!/usr/bin/env python3 """ Process Bedlam scenes by computing camera intrinsics and extrinsics from extracted data. The script reads per-scene CSV and image/depth files, computes the necessary camera parameters, and saves the resulting camera files (as .npz files) in an output directory. Usage: python preprocess_bedlam.py --root /path/to/extracted_data \ --outdir /path/to/processed_bedlam \ [--num_workers 4] """ import os import cv2 import numpy as np import pandas as pd from glob import glob import shutil import OpenEXR # Ensure OpenEXR is installed from concurrent.futures import ProcessPoolExecutor, as_completed from tqdm import tqdm import argparse # Enable OpenEXR support in OpenCV. os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1" # Global constants IMG_FORMAT = ".png" rotate_flag = False SENSOR_W = 36 SENSOR_H = 20.25 IMG_W = 1280 IMG_H = 720 # ----------------------------------------------------------------------------- # Helper functions for camera parameter conversion # ----------------------------------------------------------------------------- def focalLength_mm2px(focalLength, dslr_sens, focalPoint): focal_pixel = (focalLength / dslr_sens) * focalPoint * 2 return focal_pixel def get_cam_int(fl, sens_w, sens_h, cx, cy): flx = focalLength_mm2px(fl, sens_w, cx) fly = focalLength_mm2px(fl, sens_h, cy) cam_mat = np.array([[flx, 0, cx], [0, fly, cy], [0, 0, 1]]) return cam_mat def unreal2cv2(points): # Permute coordinates: x --> y, y --> z, z --> x points = np.roll(points, 2, axis=1) # Invert the y-axis points = points * np.array([1.0, -1.0, 1.0]) return points def get_cam_trans(body_trans, cam_trans): cam_trans = np.array(cam_trans) / 100 cam_trans = unreal2cv2(np.reshape(cam_trans, (1, 3))) body_trans = np.array(body_trans) / 100 body_trans = unreal2cv2(np.reshape(body_trans, (1, 3))) trans = body_trans - cam_trans return trans def get_cam_rotmat(pitch, yaw, roll): rotmat_yaw, _ = cv2.Rodrigues(np.array([[0, (yaw / 180) * np.pi, 0]], dtype=float)) rotmat_pitch, _ = cv2.Rodrigues(np.array([pitch / 180 * np.pi, 0, 0]).reshape(3, 1)) rotmat_roll, _ = cv2.Rodrigues(np.array([0, 0, roll / 180 * np.pi]).reshape(3, 1)) final_rotmat = rotmat_roll @ (rotmat_pitch @ rotmat_yaw) return final_rotmat def get_global_orient(cam_pitch, cam_yaw, cam_roll): pitch_rotmat, _ = cv2.Rodrigues( np.array([cam_pitch / 180 * np.pi, 0, 0]).reshape(3, 1) ) roll_rotmat, _ = cv2.Rodrigues( np.array([0, 0, cam_roll / 180 * np.pi]).reshape(3, 1) ) final_rotmat = roll_rotmat @ pitch_rotmat return final_rotmat def convert_translation_to_opencv(x, y, z): t_cv = np.array([y, -z, x]) return t_cv def rotation_matrix_unreal(yaw, pitch, roll): yaw_rad = np.deg2rad(yaw) pitch_rad = np.deg2rad(pitch) roll_rad = np.deg2rad(roll) # Yaw (left-handed) R_yaw = np.array( [ [np.cos(-yaw_rad), -np.sin(-yaw_rad), 0], [np.sin(-yaw_rad), np.cos(-yaw_rad), 0], [0, 0, 1], ] ) # Pitch (right-handed) R_pitch = np.array( [ [np.cos(pitch_rad), 0, np.sin(pitch_rad)], [0, 1, 0], [-np.sin(pitch_rad), 0, np.cos(pitch_rad)], ] ) # Roll (right-handed) R_roll = np.array( [ [1, 0, 0], [0, np.cos(roll_rad), -np.sin(roll_rad)], [0, np.sin(roll_rad), np.cos(roll_rad)], ] ) R_unreal = R_roll @ R_pitch @ R_yaw return R_unreal def convert_rotation_to_opencv(R_unreal): # Transformation matrix from Unreal to OpenCV coordinate system. C = np.array([[0, 1, 0], [0, 0, -1], [1, 0, 0]]) R_cv = C @ R_unreal @ C.T return R_cv def get_rot_unreal(yaw, pitch, roll): yaw_rad = np.deg2rad(yaw) pitch_rad = np.deg2rad(pitch) roll_rad = np.deg2rad(roll) R_yaw = np.array( [ [np.cos(yaw_rad), -np.sin(yaw_rad), 0], [np.sin(yaw_rad), np.cos(yaw_rad), 0], [0, 0, 1], ] ) R_pitch = np.array( [ [np.cos(pitch_rad), 0, -np.sin(pitch_rad)], [0, 1, 0], [np.sin(pitch_rad), 0, np.cos(pitch_rad)], ] ) R_roll = np.array( [ [1, 0, 0], [0, np.cos(roll_rad), np.sin(roll_rad)], [0, -np.sin(roll_rad), np.cos(roll_rad)], ] ) R_unreal = R_yaw @ R_pitch @ R_roll return R_unreal def get_extrinsics_unreal(R_unreal, t_unreal): cam_trans = np.array(t_unreal) ext = np.eye(4) ext[:3, :3] = R_unreal ext[:3, 3] = cam_trans.reshape(1, 3) return ext def get_extrinsics_opencv(yaw, pitch, roll, x, y, z): R_unreal = get_rot_unreal(yaw, pitch, roll) t_unreal = np.array([x / 100.0, y / 100.0, z / 100.0]) T_u2wu = get_extrinsics_unreal(R_unreal, t_unreal) T_opencv2unreal = np.array( [[0, 0, -1, 0], [1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 0, 1]], dtype=np.float32 ) T_wu2ou = np.array( [[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=np.float32 ) return np.linalg.inv(T_opencv2unreal @ T_u2wu @ T_wu2ou) # ----------------------------------------------------------------------------- # Get camera parameters from the extracted images and CSV data. # ----------------------------------------------------------------------------- def get_params( image_folder, fl, trans_body, cam_x, cam_y, cam_z, fps, cam_pitch_, cam_roll_, cam_yaw_, ): all_images = sorted(glob(os.path.join(image_folder, "*" + IMG_FORMAT))) imgnames, cam_ext, cam_int = [], [], [] for img_ind, image_path in enumerate(all_images): # Process every 5th frame. if img_ind % 5 != 0: continue cam_ind = img_ind cam_pitch_ind = cam_pitch_[cam_ind] cam_yaw_ind = cam_yaw_[cam_ind] cam_roll_ind = cam_roll_[cam_ind] CAM_INT = get_cam_int(fl[cam_ind], SENSOR_W, SENSOR_H, IMG_W / 2.0, IMG_H / 2.0) rot_unreal = rotation_matrix_unreal(cam_yaw_ind, cam_pitch_ind, cam_roll_ind) rot_cv = convert_rotation_to_opencv(rot_unreal) trans_cv = convert_translation_to_opencv( cam_x[cam_ind] / 100.0, cam_y[cam_ind] / 100.0, cam_z[cam_ind] / 100.0 ) cam_ext_ = np.eye(4) cam_ext_[:3, :3] = rot_cv # The camera pose is computed as the inverse of the transformed translation. cam_ext_[:3, 3] = -rot_cv @ trans_cv imgnames.append( os.path.join(image_path.split("/")[-2], image_path.split("/")[-1]) ) cam_ext.append(cam_ext_) cam_int.append(CAM_INT) return imgnames, cam_ext, cam_int # ----------------------------------------------------------------------------- # Processing per sequence. # ----------------------------------------------------------------------------- def process_seq(args): """ Process a single sequence task. For each image, load the corresponding depth and image files, and save the computed camera intrinsics and the inverse of the extrinsic matrix (i.e. the camera pose in world coordinates) as an NPZ file. """ ( scene, seq_name, outdir, image_folder_base, depth_folder_base, imgnames, cam_ext, cam_int, ) = args out_rgb_dir = os.path.join(outdir, '_'.join([scene, seq_name]), 'rgb') out_depth_dir = os.path.join(outdir, '_'.join([scene, seq_name]), 'depth') out_cam_dir = os.path.join(outdir, "_".join([scene, seq_name]), "cam") os.makedirs(out_rgb_dir, exist_ok=True) os.makedirs(out_depth_dir, exist_ok=True) os.makedirs(out_cam_dir, exist_ok=True) assert ( len(imgnames) == len(cam_ext) == len(cam_int) ), f"Inconsistent lengths for {scene}_{seq_name}" for imgname, ext, intr in zip(imgnames, cam_ext, cam_int): depthname = imgname.replace(".png", "_depth.exr") imgpath = os.path.join(image_folder_base, imgname) depthpath = os.path.join(depth_folder_base, depthname) depth= OpenEXR.File(depthpath).parts[0].channels['Depth'].pixels depth = depth.astype(np.float32)/100.0 outimg_path = os.path.join(out_rgb_dir, os.path.basename(imgpath)) outdepth_path = os.path.join(out_depth_dir, os.path.basename(imgpath).replace('.png','.npy')) outcam_path = os.path.join( out_cam_dir, os.path.basename(imgpath).replace(".png", ".npz") ) shutil.copy(imgpath, outimg_path) np.save(outdepth_path, depth) np.savez(outcam_path, intrinsics=intr, pose=np.linalg.inv(ext)) return None # ----------------------------------------------------------------------------- # Main entry point. # ----------------------------------------------------------------------------- def main(): parser = argparse.ArgumentParser( description="Process Bedlam scenes: compute camera intrinsics and extrinsics, " "and save processed camera files." ) parser.add_argument( "--root", type=str, required=True, help="Root directory of the extracted data (scenes).", ) parser.add_argument( "--outdir", type=str, required=True, help="Output directory for processed data." ) parser.add_argument( "--num_workers", type=int, default=None, help="Number of worker processes (default: os.cpu_count()//2).", ) args = parser.parse_args() root = args.root outdir = args.outdir num_workers = ( args.num_workers if args.num_workers is not None else (os.cpu_count() or 4) // 2 ) # Get scene directories from the root folder. scenes = sorted( [d for d in os.listdir(root) if os.path.isdir(os.path.join(root, d))] ) # Exclude HDRI scenes. hdri_scenes = [ "20221010_3_1000_batch01hand", "20221017_3_1000_batch01hand", "20221018_3-8_250_batch01hand", "20221019_3_250_highbmihand", ] scenes = np.setdiff1d(scenes, hdri_scenes) tasks = [] for scene in tqdm(scenes, desc="Collecting tasks"): # Skip closeup scenes. if "closeup" in scene: continue base_folder = os.path.join(root, scene) image_folder_base = os.path.join(root, scene, "png") depth_folder_base = os.path.join(root, scene, "depth") csv_path = os.path.join(base_folder, "be_seq.csv") if not os.path.exists(csv_path): continue csv_data = pd.read_csv(csv_path) csv_data = csv_data.to_dict("list") cam_csv_base = os.path.join(base_folder, "ground_truth", "camera") # Look for a row in the CSV with a "sequence_name" comment. for idx, comment in enumerate(csv_data.get("Comment", [])): if "sequence_name" in comment: seq_name = comment.split(";")[0].split("=")[-1] cam_csv_path = os.path.join(cam_csv_base, seq_name + "_camera.csv") if not os.path.exists(cam_csv_path): continue cam_csv_data = pd.read_csv(cam_csv_path) cam_csv_data = cam_csv_data.to_dict("list") cam_x = cam_csv_data["x"] cam_y = cam_csv_data["y"] cam_z = cam_csv_data["z"] cam_yaw_ = cam_csv_data["yaw"] cam_pitch_ = cam_csv_data["pitch"] cam_roll_ = cam_csv_data["roll"] fl = cam_csv_data["focal_length"] image_folder = os.path.join(image_folder_base, seq_name) trans_body = None # Not used here. imgnames, cam_ext, cam_int = get_params( image_folder, fl, trans_body, cam_x, cam_y, cam_z, 6, cam_pitch_=cam_pitch_, cam_roll_=cam_roll_, cam_yaw_=cam_yaw_, ) tasks.append( ( scene, seq_name, outdir, image_folder_base, depth_folder_base, imgnames, cam_ext, cam_int, ) ) # Process only the first valid sequence for this scene. break # Process each task in parallel. with ProcessPoolExecutor(max_workers=num_workers) as executor: futures = {executor.submit(process_seq, task): task for task in tasks} for future in tqdm( as_completed(futures), total=len(futures), desc="Processing sequences" ): error = future.result() if error: print(error) if __name__ == "__main__": main()