Spaces:
Running
on
L4
Running
on
L4
Update project configuration and dependencies; modify .gitignore, adjust README title, and refine inference settings
288376d
# import contextlib | |
# import os | |
# import os.path as osp | |
# import sys | |
# from typing import cast | |
# import imageio.v3 as iio | |
# import numpy as np | |
# import torch | |
# class Dust3rPipeline(object): | |
# def __init__(self, device: str | torch.device = "cuda"): | |
# submodule_path = osp.realpath( | |
# osp.join(osp.dirname(__file__), "../../third_party/dust3r/") | |
# ) | |
# if submodule_path not in sys.path: | |
# sys.path.insert(0, submodule_path) | |
# try: | |
# with open(os.devnull, "w") as f, contextlib.redirect_stdout(f): | |
# from dust3r.cloud_opt import ( # type: ignore[import] | |
# GlobalAlignerMode, | |
# global_aligner, | |
# ) | |
# from dust3r.image_pairs import make_pairs # type: ignore[import] | |
# from dust3r.inference import inference # type: ignore[import] | |
# from dust3r.model import AsymmetricCroCo3DStereo # type: ignore[import] | |
# from dust3r.utils.image import load_images # type: ignore[import] | |
# except ImportError: | |
# raise ImportError( | |
# "Missing required submodule: 'dust3r'. Please ensure that all submodules are properly set up.\n\n" | |
# "To initialize them, run the following command in the project root:\n" | |
# " git submodule update --init --recursive" | |
# ) | |
# self.device = torch.device(device) | |
# self.model = AsymmetricCroCo3DStereo.from_pretrained( | |
# "naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt" | |
# ).to(self.device) | |
# self._GlobalAlignerMode = GlobalAlignerMode | |
# self._global_aligner = global_aligner | |
# self._make_pairs = make_pairs | |
# self._inference = inference | |
# self._load_images = load_images | |
# def infer_cameras_and_points( | |
# self, | |
# img_paths: list[str], | |
# Ks: list[list] = None, | |
# c2ws: list[list] = None, | |
# batch_size: int = 16, | |
# schedule: str = "cosine", | |
# lr: float = 0.01, | |
# niter: int = 500, | |
# min_conf_thr: int = 3, | |
# ) -> tuple[ | |
# list[np.ndarray], np.ndarray, np.ndarray, list[np.ndarray], list[np.ndarray] | |
# ]: | |
# num_img = len(img_paths) | |
# if num_img == 1: | |
# print("Only one image found, duplicating it to create a stereo pair.") | |
# img_paths = img_paths * 2 | |
# images = self._load_images(img_paths, size=512) | |
# pairs = self._make_pairs( | |
# images, | |
# scene_graph="complete", | |
# prefilter=None, | |
# symmetrize=True, | |
# ) | |
# output = self._inference(pairs, self.model, self.device, batch_size=batch_size) | |
# ori_imgs = [iio.imread(p) for p in img_paths] | |
# ori_img_whs = np.array([img.shape[1::-1] for img in ori_imgs]) | |
# img_whs = np.concatenate([image["true_shape"][:, ::-1] for image in images], 0) | |
# scene = self._global_aligner( | |
# output, | |
# device=self.device, | |
# mode=self._GlobalAlignerMode.PointCloudOptimizer, | |
# same_focals=True, | |
# optimize_pp=False, # True, | |
# min_conf_thr=min_conf_thr, | |
# ) | |
# # if Ks is not None: | |
# # scene.preset_focal( | |
# # torch.tensor([[K[0, 0], K[1, 1]] for K in Ks]) | |
# # ) | |
# if c2ws is not None: | |
# scene.preset_pose(c2ws) | |
# _ = scene.compute_global_alignment( | |
# init="msp", niter=niter, schedule=schedule, lr=lr | |
# ) | |
# imgs = cast(list, scene.imgs) | |
# Ks = scene.get_intrinsics().detach().cpu().numpy().copy() | |
# c2ws = scene.get_im_poses().detach().cpu().numpy() # type: ignore | |
# pts3d = [x.detach().cpu().numpy() for x in scene.get_pts3d()] # type: ignore | |
# if num_img > 1: | |
# masks = [x.detach().cpu().numpy() for x in scene.get_masks()] | |
# points = [p[m] for p, m in zip(pts3d, masks)] | |
# point_colors = [img[m] for img, m in zip(imgs, masks)] | |
# else: | |
# points = [p.reshape(-1, 3) for p in pts3d] | |
# point_colors = [img.reshape(-1, 3) for img in imgs] | |
# # Convert back to the original image size. | |
# imgs = ori_imgs | |
# Ks[:, :2, -1] *= ori_img_whs / img_whs | |
# Ks[:, :2, :2] *= (ori_img_whs / img_whs).mean(axis=1, keepdims=True)[..., None] | |
# return imgs, Ks, c2ws, points, point_colors | |