vmem / extern /CUT3R /datasets_preprocess /preprocess_dl3dv.py
liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
import argparse
import random
import gzip
import json
import os
import sys
import os.path as osp
import torch
import PIL.Image
from PIL import Image
import numpy as np
import cv2
from tqdm import tqdm
import matplotlib.pyplot as plt
import shutil
from read_write_model import run
import torch
import torchvision
def get_parser():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--dl3dv_dir", default="../DL3DV-Dense/3K/") # TODO
parser.add_argument("--output_dir", default="../processed_dl3dv/3K/") # TODO
return parser
from scipy.spatial.transform import Rotation as R
def read_array(path):
with open(path, "rb") as fid:
width, height, channels = np.genfromtxt(
fid, delimiter="&", max_rows=1, usecols=(0, 1, 2), dtype=int
)
fid.seek(0)
num_delimiter = 0
byte = fid.read(1)
while True:
if byte == b"&":
num_delimiter += 1
if num_delimiter >= 3:
break
byte = fid.read(1)
array = np.fromfile(fid, np.float32)
array = array.reshape((width, height, channels), order="F")
return np.transpose(array, (1, 0, 2)).squeeze()
def main(rootdir, outdir):
os.makedirs(outdir, exist_ok=True)
envs = [f for f in os.listdir(rootdir) if os.path.isdir(osp.join(rootdir, f))]
for env in tqdm(envs):
subseqs = [
f
for f in os.listdir(osp.join(rootdir, env))
if os.path.isdir(osp.join(rootdir, env, f)) and f.startswith("dense")
]
for subseq in subseqs:
sparse_dir = osp.join(rootdir, env, subseq, "sparse")
images_dir = osp.join(rootdir, env, subseq, "images")
# depth_dir = osp.join(rootdir, env, subseq, "stereo", "depth_maps")
if (
(not os.path.exists(sparse_dir))
or (not os.path.exists(images_dir))
# or (not os.path.exists(depth_dir))
):
continue
intrins_file = sparse_dir + "/cameras.txt"
poses_file = sparse_dir + "/images.txt"
if os.path.exists(intrins_file) and os.path.exists(poses_file):
continue
run(sparse_dir, sparse_dir)
cam_params = {}
with open(intrins_file, "r") as f:
for line in f:
if line.startswith("#"):
continue
parts = line.strip().split()
if len(parts) == 0:
continue
cam_id = int(parts[0])
fx = float(parts[4])
fy = float(parts[5])
cx = float(parts[6])
cy = float(parts[7])
cam_params[cam_id] = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])
poses = []
images = []
intrinsics = []
with open(poses_file, "r") as f:
for i, line in enumerate(f):
if line.startswith("#"):
continue
parts = line.strip().split()
if len(parts) == 0:
continue
if "." in parts[0]:
continue
img_name = parts[-1]
w, x, y, z = map(float, parts[1:5])
R = np.array(
[
[
1 - 2 * y * y - 2 * z * z,
2 * x * y - 2 * z * w,
2 * x * z + 2 * y * w,
],
[
2 * x * y + 2 * z * w,
1 - 2 * x * x - 2 * z * z,
2 * y * z - 2 * x * w,
],
[
2 * x * z - 2 * y * w,
2 * y * z + 2 * x * w,
1 - 2 * x * x - 2 * y * y,
],
]
)
tx, ty, tz = map(float, parts[5:8])
cam_id = int(parts[-2])
pose = np.eye(4)
pose[:3, :3] = R
pose[:3, 3] = [tx, ty, tz]
poses.append(np.linalg.inv(pose))
images.append(img_name)
intrinsics.append(cam_params[cam_id])
os.makedirs(osp.join(outdir, env, subseq), exist_ok=True)
os.makedirs(osp.join(outdir, env, subseq, "rgb"), exist_ok=True)
# os.makedirs(osp.join(outdir, env, subseq, "depth"), exist_ok=True)
os.makedirs(osp.join(outdir, env, subseq, "cam"), exist_ok=True)
for i, img_name in enumerate(tqdm(images)):
basename = img_name.split("/")[-1]
if os.path.exists(
osp.join(
outdir, env, subseq, "cam", basename.replace(".png", ".npz")
)
):
print("Exist!")
continue
img_path = os.path.join(images_dir, img_name)
# depth_path = os.path.join(depth_dir, img_name + ".geometric.bin")
if not os.path.exists(depth_path) or not os.path.exists(img_path):
continue
try:
rgb = Image.open(img_path)
# depth = read_array(depth_path)
except:
continue
intrinsic = intrinsics[i]
pose = poses[i]
# save all
rgb.save(osp.join(outdir, env, subseq, "rgb", basename))
# np.save(
# osp.join(
# outdir, env, subseq, "depth", basename.replace(".png", ".npy")
# ),
# depth,
# )
np.savez(
osp.join(
outdir, env, subseq, "cam", basename.replace(".png", ".npz")
),
intrinsic=intrinsic,
pose=pose,
)
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
main(args.dl3dv_dir, args.output_dir)