vmem / extern /CUT3R /datasets_preprocess /preprocess_arkitscenes_highres.py
liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
import os
import json
import os.path as osp
import decimal
import argparse
import math
from bisect import bisect_left
from PIL import Image
import numpy as np
import quaternion
from scipy import interpolate
import cv2
from tqdm import tqdm
from multiprocessing import Pool
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--arkitscenes_dir",
default="",
)
parser.add_argument(
"--output_dir",
default="data/dust3r_data/processed_arkitscenes_highres",
)
return parser
def value_to_decimal(value, decimal_places):
decimal.getcontext().rounding = decimal.ROUND_HALF_UP # define rounding method
return decimal.Decimal(str(float(value))).quantize(
decimal.Decimal("1e-{}".format(decimal_places))
)
def closest(value, sorted_list):
index = bisect_left(sorted_list, value)
if index == 0:
return sorted_list[0]
elif index == len(sorted_list):
return sorted_list[-1]
else:
value_before = sorted_list[index - 1]
value_after = sorted_list[index]
if value_after - value < value - value_before:
return value_after
else:
return value_before
def get_up_vectors(pose_device_to_world):
return np.matmul(pose_device_to_world, np.array([[0.0], [-1.0], [0.0], [0.0]]))
def get_right_vectors(pose_device_to_world):
return np.matmul(pose_device_to_world, np.array([[1.0], [0.0], [0.0], [0.0]]))
def read_traj(traj_path):
quaternions = []
poses = []
timestamps = []
poses_p_to_w = []
with open(traj_path) as f:
traj_lines = f.readlines()
for line in traj_lines:
tokens = line.split()
assert len(tokens) == 7
traj_timestamp = float(tokens[0])
timestamps_decimal_value = value_to_decimal(traj_timestamp, 3)
timestamps.append(
float(timestamps_decimal_value)
) # for spline interpolation
angle_axis = [float(tokens[1]), float(tokens[2]), float(tokens[3])]
r_w_to_p, _ = cv2.Rodrigues(np.asarray(angle_axis))
t_w_to_p = np.asarray(
[float(tokens[4]), float(tokens[5]), float(tokens[6])]
)
pose_w_to_p = np.eye(4)
pose_w_to_p[:3, :3] = r_w_to_p
pose_w_to_p[:3, 3] = t_w_to_p
pose_p_to_w = np.linalg.inv(pose_w_to_p)
r_p_to_w_as_quat = quaternion.from_rotation_matrix(pose_p_to_w[:3, :3])
t_p_to_w = pose_p_to_w[:3, 3]
poses_p_to_w.append(pose_p_to_w)
poses.append(t_p_to_w)
quaternions.append(r_p_to_w_as_quat)
return timestamps, poses, quaternions, poses_p_to_w
def main(rootdir, outdir):
os.makedirs(outdir, exist_ok=True)
subdirs = ["Validation", "Training"]
for subdir in subdirs:
outsubdir = osp.join(outdir, subdir)
scene_dirs = sorted(
[
d
for d in os.listdir(osp.join(rootdir, subdir))
if osp.isdir(osp.join(rootdir, subdir, d))
]
)
with Pool() as pool:
results = list(
tqdm(
pool.imap(
process_scene,
[
(rootdir, outdir, subdir, scene_subdir)
for scene_subdir in scene_dirs
],
),
total=len(scene_dirs),
)
)
# Filter None results and other post-processing
valid_scenes = [result for result in results if result is not None]
outlistfile = osp.join(outsubdir, "scene_list.json")
with open(outlistfile, "w") as f:
json.dump(valid_scenes, f)
def process_scene(args):
rootdir, outdir, subdir, scene_subdir = args
# Unpack paths
scene_dir = osp.join(rootdir, subdir, scene_subdir)
outsubdir = osp.join(outdir, subdir)
out_scene_subdir = osp.join(outsubdir, scene_subdir)
# Validation if necessary resources exist
if (
not osp.exists(osp.join(scene_dir, "highres_depth"))
or not osp.exists(osp.join(scene_dir, "vga_wide"))
or not osp.exists(osp.join(scene_dir, "vga_wide_intrinsics"))
or not osp.exists(osp.join(scene_dir, "lowres_wide.traj"))
):
return None
depth_dir = osp.join(scene_dir, "highres_depth")
rgb_dir = osp.join(scene_dir, "vga_wide")
intrinsics_dir = osp.join(scene_dir, "vga_wide_intrinsics")
traj_path = osp.join(scene_dir, "lowres_wide.traj")
depth_files = sorted(os.listdir(depth_dir))
img_files = sorted(os.listdir(rgb_dir))
out_scene_subdir = osp.join(outsubdir, scene_subdir)
# STEP 3: parse the scene and export the list of valid (K, pose, rgb, depth) and convert images
scene_metadata_path = osp.join(out_scene_subdir, "scene_metadata.npz")
if osp.isfile(scene_metadata_path):
print(f"Skipping {scene_subdir}")
else:
print(f"parsing {scene_subdir}")
# loads traj
timestamps, poses, quaternions, poses_cam_to_world = read_traj(traj_path)
poses = np.array(poses)
quaternions = np.array(quaternions, dtype=np.quaternion)
quaternions = quaternion.unflip_rotors(quaternions)
timestamps = np.array(timestamps)
all_depths = sorted(
[
(basename, basename.split(".png")[0].split("_")[1])
for basename in depth_files
],
key=lambda x: float(x[1]),
)
selected_depths = []
timestamps_selected = []
timestamp_min = timestamps.min()
timestamp_max = timestamps.max()
for basename, frame_id in all_depths:
frame_id = float(frame_id)
if frame_id < timestamp_min or frame_id > timestamp_max:
continue
selected_depths.append((basename, frame_id))
timestamps_selected.append(frame_id)
sky_direction_scene, trajectories, intrinsics, images, depths = (
convert_scene_metadata(
scene_subdir,
intrinsics_dir,
timestamps,
quaternions,
poses,
poses_cam_to_world,
img_files,
selected_depths,
timestamps_selected,
)
)
if len(images) == 0:
print(f"Skipping {scene_subdir}")
return None
os.makedirs(out_scene_subdir, exist_ok=True)
os.makedirs(os.path.join(out_scene_subdir, "vga_wide"), exist_ok=True)
os.makedirs(os.path.join(out_scene_subdir, "highres_depth"), exist_ok=True)
assert isinstance(sky_direction_scene, str)
for image_path, depth_path in zip(images, depths):
img_out = os.path.join(
out_scene_subdir, "vga_wide", image_path.replace(".png", ".jpg")
)
depth_out = os.path.join(out_scene_subdir, "highres_depth", depth_path)
if osp.isfile(img_out) and osp.isfile(depth_out):
continue
vga_wide_path = osp.join(rgb_dir, image_path)
depth_path = osp.join(depth_dir, depth_path)
if not osp.isfile(vga_wide_path) or not osp.isfile(depth_path):
continue
img = Image.open(vga_wide_path)
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
# rotate the image
if sky_direction_scene == "RIGHT":
try:
img = img.transpose(Image.Transpose.ROTATE_90)
except Exception:
img = img.transpose(Image.ROTATE_90)
depth = cv2.rotate(depth, cv2.ROTATE_90_COUNTERCLOCKWISE)
elif sky_direction_scene == "LEFT":
try:
img = img.transpose(Image.Transpose.ROTATE_270)
except Exception:
img = img.transpose(Image.ROTATE_270)
depth = cv2.rotate(depth, cv2.ROTATE_90_CLOCKWISE)
elif sky_direction_scene == "DOWN":
try:
img = img.transpose(Image.Transpose.ROTATE_180)
except Exception:
img = img.transpose(Image.ROTATE_180)
depth = cv2.rotate(depth, cv2.ROTATE_180)
W, H = img.size
if not osp.isfile(img_out):
img.save(img_out)
depth = cv2.resize(depth, (W, H), interpolation=cv2.INTER_NEAREST)
if not osp.isfile(
depth_out
): # avoid destroying the base dataset when you mess up the paths
cv2.imwrite(depth_out, depth)
# save at the end
np.savez(
scene_metadata_path,
trajectories=trajectories,
intrinsics=intrinsics,
images=images,
)
def convert_scene_metadata(
scene_subdir,
intrinsics_dir,
timestamps,
quaternions,
poses,
poses_cam_to_world,
all_images,
selected_depths,
timestamps_selected,
):
# find scene orientation
sky_direction_scene, rotated_to_cam = find_scene_orientation(poses_cam_to_world)
# find/compute pose for selected timestamps
# most images have a valid timestamp / exact pose associated
timestamps_selected = np.array(timestamps_selected)
spline = interpolate.interp1d(timestamps, poses, kind="linear", axis=0)
interpolated_rotations = quaternion.squad(
quaternions, timestamps, timestamps_selected
)
interpolated_positions = spline(timestamps_selected)
trajectories = []
intrinsics = []
images = []
depths = []
for i, (basename, frame_id) in enumerate(selected_depths):
intrinsic_fn = osp.join(intrinsics_dir, f"{scene_subdir}_{frame_id}.pincam")
search_interval = int(0.1 / 0.001)
for timestamp in range(-search_interval, search_interval + 1):
if osp.exists(intrinsic_fn):
break
intrinsic_fn = osp.join(
intrinsics_dir,
f"{scene_subdir}_{float(frame_id) + timestamp * 0.001:.3f}.pincam",
)
if not osp.exists(intrinsic_fn):
print(f"Skipping {intrinsic_fn}")
continue
image_path = "{}_{}.png".format(scene_subdir, frame_id)
search_interval = int(0.001 / 0.001)
for timestamp in range(-search_interval, search_interval + 1):
if image_path in all_images:
break
image_path = "{}_{}.png".format(
scene_subdir, float(frame_id) + timestamp * 0.001
)
if image_path not in all_images:
print(f"Skipping {scene_subdir} {frame_id}")
continue
w, h, fx, fy, hw, hh = np.loadtxt(intrinsic_fn) # PINHOLE
pose = np.eye(4)
pose[:3, :3] = quaternion.as_rotation_matrix(interpolated_rotations[i])
pose[:3, 3] = interpolated_positions[i]
images.append(basename)
depths.append(basename)
if sky_direction_scene == "RIGHT" or sky_direction_scene == "LEFT":
intrinsics.append([h, w, fy, fx, hh, hw]) # swapped intrinsics
else:
intrinsics.append([w, h, fx, fy, hw, hh])
trajectories.append(
pose @ rotated_to_cam
) # pose_cam_to_world @ rotated_to_cam = rotated(cam) to world
return sky_direction_scene, trajectories, intrinsics, images, depths
def find_scene_orientation(poses_cam_to_world):
if len(poses_cam_to_world) > 0:
up_vector = sum(get_up_vectors(p) for p in poses_cam_to_world) / len(
poses_cam_to_world
)
right_vector = sum(get_right_vectors(p) for p in poses_cam_to_world) / len(
poses_cam_to_world
)
up_world = np.array([[0.0], [0.0], [1.0], [0.0]])
else:
up_vector = np.array([[0.0], [-1.0], [0.0], [0.0]])
right_vector = np.array([[1.0], [0.0], [0.0], [0.0]])
up_world = np.array([[0.0], [0.0], [1.0], [0.0]])
# value between 0, 180
device_up_to_world_up_angle = (
np.arccos(np.clip(np.dot(np.transpose(up_world), up_vector), -1.0, 1.0)).item()
* 180.0
/ np.pi
)
device_right_to_world_up_angle = (
np.arccos(
np.clip(np.dot(np.transpose(up_world), right_vector), -1.0, 1.0)
).item()
* 180.0
/ np.pi
)
up_closest_to_90 = abs(device_up_to_world_up_angle - 90.0) < abs(
device_right_to_world_up_angle - 90.0
)
if up_closest_to_90:
assert abs(device_up_to_world_up_angle - 90.0) < 45.0
# LEFT
if device_right_to_world_up_angle > 90.0:
sky_direction_scene = "LEFT"
cam_to_rotated_q = quaternion.from_rotation_vector(
[0.0, 0.0, math.pi / 2.0]
)
else:
# note that in metadata.csv RIGHT does not exist, but again it's not accurate...
# well, turns out there are scenes oriented like this
# for example Training/41124801
sky_direction_scene = "RIGHT"
cam_to_rotated_q = quaternion.from_rotation_vector(
[0.0, 0.0, -math.pi / 2.0]
)
else:
# right is close to 90
assert abs(device_right_to_world_up_angle - 90.0) < 45.0
if device_up_to_world_up_angle > 90.0:
sky_direction_scene = "DOWN"
cam_to_rotated_q = quaternion.from_rotation_vector([0.0, 0.0, math.pi])
else:
sky_direction_scene = "UP"
cam_to_rotated_q = quaternion.quaternion(1, 0, 0, 0)
cam_to_rotated = np.eye(4)
cam_to_rotated[:3, :3] = quaternion.as_rotation_matrix(cam_to_rotated_q)
rotated_to_cam = np.linalg.inv(cam_to_rotated)
return sky_direction_scene, rotated_to_cam
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
main(args.arkitscenes_dir, args.output_dir)