vmem / extern /CUT3R /datasets_preprocess /preprocess_arkitscenes.py
liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
import os
import json
import os.path as osp
import decimal
import argparse
import math
from bisect import bisect_left
from PIL import Image
import numpy as np
import quaternion
from scipy import interpolate
import cv2
from tqdm import tqdm
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
"--arkitscenes_dir",
default="data/dust3r_data/data_arkitscenes/raw",
)
parser.add_argument(
"--precomputed_pairs",
default="data/dust3r_data/data_arkitscenes/arkitscenes_pairs",
)
parser.add_argument(
"--output_dir",
default="data/dust3r_data/processed_arkitscenes",
)
return parser
def value_to_decimal(value, decimal_places):
decimal.getcontext().rounding = decimal.ROUND_HALF_UP # define rounding method
return decimal.Decimal(str(float(value))).quantize(
decimal.Decimal("1e-{}".format(decimal_places))
)
def closest(value, sorted_list):
index = bisect_left(sorted_list, value)
if index == 0:
return sorted_list[0]
elif index == len(sorted_list):
return sorted_list[-1]
else:
value_before = sorted_list[index - 1]
value_after = sorted_list[index]
if value_after - value < value - value_before:
return value_after
else:
return value_before
def get_up_vectors(pose_device_to_world):
return np.matmul(pose_device_to_world, np.array([[0.0], [-1.0], [0.0], [0.0]]))
def get_right_vectors(pose_device_to_world):
return np.matmul(pose_device_to_world, np.array([[1.0], [0.0], [0.0], [0.0]]))
def read_traj(traj_path):
quaternions = []
poses = []
timestamps = []
poses_p_to_w = []
with open(traj_path) as f:
traj_lines = f.readlines()
for line in traj_lines:
tokens = line.split()
assert len(tokens) == 7
traj_timestamp = float(tokens[0])
timestamps_decimal_value = value_to_decimal(traj_timestamp, 3)
timestamps.append(
float(timestamps_decimal_value)
) # for spline interpolation
angle_axis = [float(tokens[1]), float(tokens[2]), float(tokens[3])]
r_w_to_p, _ = cv2.Rodrigues(np.asarray(angle_axis))
t_w_to_p = np.asarray(
[float(tokens[4]), float(tokens[5]), float(tokens[6])]
)
pose_w_to_p = np.eye(4)
pose_w_to_p[:3, :3] = r_w_to_p
pose_w_to_p[:3, 3] = t_w_to_p
pose_p_to_w = np.linalg.inv(pose_w_to_p)
r_p_to_w_as_quat = quaternion.from_rotation_matrix(pose_p_to_w[:3, :3])
t_p_to_w = pose_p_to_w[:3, 3]
poses_p_to_w.append(pose_p_to_w)
poses.append(t_p_to_w)
quaternions.append(r_p_to_w_as_quat)
return timestamps, poses, quaternions, poses_p_to_w
def main(rootdir, pairsdir, outdir):
os.makedirs(outdir, exist_ok=True)
subdirs = ["Test", "Training"]
for subdir in subdirs:
# STEP 1: list all scenes
outsubdir = osp.join(outdir, subdir)
os.makedirs(outsubdir, exist_ok=True)
listfile = osp.join(pairsdir, subdir, "scene_list.json")
with open(listfile, "r") as f:
scene_dirs = json.load(f)
valid_scenes = []
for scene_subdir in tqdm(scene_dirs):
if not os.path.isdir(osp.join(rootdir, "Test", scene_subdir)):
if not os.path.isdir(osp.join(rootdir, "Training", scene_subdir)):
continue
else:
root_subdir = "Training"
else:
root_subdir = "Test"
out_scene_subdir = osp.join(outsubdir, scene_subdir)
os.makedirs(out_scene_subdir, exist_ok=True)
scene_dir = osp.join(rootdir, root_subdir, scene_subdir)
depth_dir = osp.join(scene_dir, "lowres_depth")
rgb_dir = osp.join(scene_dir, "vga_wide")
intrinsics_dir = osp.join(scene_dir, "vga_wide_intrinsics")
traj_path = osp.join(scene_dir, "lowres_wide.traj")
# STEP 2: read selected_pairs.npz
selected_pairs_path = osp.join(
pairsdir, subdir, scene_subdir, "selected_pairs.npz"
)
selected_npz = np.load(selected_pairs_path)
selection, pairs = selected_npz["selection"], selected_npz["pairs"]
selected_sky_direction_scene = str(selected_npz["sky_direction_scene"][0])
if len(selection) == 0 or len(pairs) == 0:
# not a valid scene
continue
valid_scenes.append(scene_subdir)
# STEP 3: parse the scene and export the list of valid (K, pose, rgb, depth) and convert images
scene_metadata_path = osp.join(out_scene_subdir, "scene_metadata.npz")
if osp.isfile(scene_metadata_path):
continue
else:
print(f"parsing {scene_subdir}")
# loads traj
timestamps, poses, quaternions, poses_cam_to_world = read_traj(
traj_path
)
poses = np.array(poses)
quaternions = np.array(quaternions, dtype=np.quaternion)
quaternions = quaternion.unflip_rotors(quaternions)
timestamps = np.array(timestamps)
selected_images = [
(basename, basename.split(".png")[0].split("_")[1])
for basename in selection
]
timestamps_selected = [
float(frame_id) for _, frame_id in selected_images
]
sky_direction_scene, trajectories, intrinsics, images = (
convert_scene_metadata(
scene_subdir,
intrinsics_dir,
timestamps,
quaternions,
poses,
poses_cam_to_world,
selected_images,
timestamps_selected,
)
)
assert selected_sky_direction_scene == sky_direction_scene
os.makedirs(os.path.join(out_scene_subdir, "vga_wide"), exist_ok=True)
os.makedirs(
os.path.join(out_scene_subdir, "lowres_depth"), exist_ok=True
)
assert isinstance(sky_direction_scene, str)
all_exist = True
for basename in images:
vga_wide_path = osp.join(rgb_dir, basename)
depth_path = osp.join(depth_dir, basename)
if not osp.isfile(vga_wide_path) or not osp.isfile(depth_path):
all_exist = False
break
if not all_exist:
continue
for basename in images:
img_out = os.path.join(
out_scene_subdir, "vga_wide", basename.replace(".png", ".jpg")
)
depth_out = os.path.join(out_scene_subdir, "lowres_depth", basename)
if osp.isfile(img_out) and osp.isfile(depth_out):
continue
vga_wide_path = osp.join(rgb_dir, basename)
depth_path = osp.join(depth_dir, basename)
img = Image.open(vga_wide_path)
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
# rotate the image
if sky_direction_scene == "RIGHT":
try:
img = img.transpose(Image.Transpose.ROTATE_90)
except Exception:
img = img.transpose(Image.ROTATE_90)
depth = cv2.rotate(depth, cv2.ROTATE_90_COUNTERCLOCKWISE)
elif sky_direction_scene == "LEFT":
try:
img = img.transpose(Image.Transpose.ROTATE_270)
except Exception:
img = img.transpose(Image.ROTATE_270)
depth = cv2.rotate(depth, cv2.ROTATE_90_CLOCKWISE)
elif sky_direction_scene == "DOWN":
try:
img = img.transpose(Image.Transpose.ROTATE_180)
except Exception:
img = img.transpose(Image.ROTATE_180)
depth = cv2.rotate(depth, cv2.ROTATE_180)
W, H = img.size
if not osp.isfile(img_out):
img.save(img_out)
depth = cv2.resize(
depth, (W, H), interpolation=cv2.INTER_NEAREST_EXACT
)
if not osp.isfile(
depth_out
): # avoid destroying the base dataset when you mess up the paths
cv2.imwrite(depth_out, depth)
# save at the end
np.savez(
scene_metadata_path,
trajectories=trajectories,
intrinsics=intrinsics,
images=images,
pairs=pairs,
)
outlistfile = osp.join(outsubdir, "scene_list.json")
for scene_subdir in valid_scenes:
scene_metadata_path = osp.join(
outsubdir, scene_subdir, "scene_metadata.npz"
)
if not osp.isfile(scene_metadata_path):
valid_scenes.remove(scene_subdir)
with open(outlistfile, "w") as f:
json.dump(valid_scenes, f)
# STEP 5: concat all scene_metadata.npz into a single file
scene_data = {}
for scene_subdir in valid_scenes:
scene_metadata_path = osp.join(
outsubdir, scene_subdir, "scene_metadata.npz"
)
with np.load(scene_metadata_path) as data:
trajectories = data["trajectories"]
intrinsics = data["intrinsics"]
images = data["images"]
pairs = data["pairs"]
scene_data[scene_subdir] = {
"trajectories": trajectories,
"intrinsics": intrinsics,
"images": images,
"pairs": pairs,
}
offset = 0
counts = []
scenes = []
sceneids = []
images = []
intrinsics = []
trajectories = []
pairs = []
for scene_idx, (scene_subdir, data) in enumerate(scene_data.items()):
num_imgs = data["images"].shape[0]
img_pairs = data["pairs"]
scenes.append(scene_subdir)
sceneids.extend([scene_idx] * num_imgs)
images.append(data["images"])
K = np.expand_dims(np.eye(3), 0).repeat(num_imgs, 0)
K[:, 0, 0] = [fx for _, _, fx, _, _, _ in data["intrinsics"]]
K[:, 1, 1] = [fy for _, _, _, fy, _, _ in data["intrinsics"]]
K[:, 0, 2] = [hw for _, _, _, _, hw, _ in data["intrinsics"]]
K[:, 1, 2] = [hh for _, _, _, _, _, hh in data["intrinsics"]]
intrinsics.append(K)
trajectories.append(data["trajectories"])
# offset pairs
img_pairs[:, 0:2] += offset
pairs.append(img_pairs)
counts.append(offset)
offset += num_imgs
images = np.concatenate(images, axis=0)
intrinsics = np.concatenate(intrinsics, axis=0)
trajectories = np.concatenate(trajectories, axis=0)
pairs = np.concatenate(pairs, axis=0)
np.savez(
osp.join(outsubdir, "all_metadata.npz"),
counts=counts,
scenes=scenes,
sceneids=sceneids,
images=images,
intrinsics=intrinsics,
trajectories=trajectories,
pairs=pairs,
)
def convert_scene_metadata(
scene_subdir,
intrinsics_dir,
timestamps,
quaternions,
poses,
poses_cam_to_world,
selected_images,
timestamps_selected,
):
# find scene orientation
sky_direction_scene, rotated_to_cam = find_scene_orientation(poses_cam_to_world)
# find/compute pose for selected timestamps
# most images have a valid timestamp / exact pose associated
timestamps_selected = np.array(timestamps_selected)
spline = interpolate.interp1d(timestamps, poses, kind="linear", axis=0)
interpolated_rotations = quaternion.squad(
quaternions, timestamps, timestamps_selected
)
interpolated_positions = spline(timestamps_selected)
trajectories = []
intrinsics = []
images = []
for i, (basename, frame_id) in enumerate(selected_images):
intrinsic_fn = osp.join(intrinsics_dir, f"{scene_subdir}_{frame_id}.pincam")
if not osp.exists(intrinsic_fn):
intrinsic_fn = osp.join(
intrinsics_dir, f"{scene_subdir}_{float(frame_id) - 0.001:.3f}.pincam"
)
if not osp.exists(intrinsic_fn):
intrinsic_fn = osp.join(
intrinsics_dir, f"{scene_subdir}_{float(frame_id) + 0.001:.3f}.pincam"
)
assert osp.exists(intrinsic_fn)
w, h, fx, fy, hw, hh = np.loadtxt(intrinsic_fn) # PINHOLE
pose = np.eye(4)
pose[:3, :3] = quaternion.as_rotation_matrix(interpolated_rotations[i])
pose[:3, 3] = interpolated_positions[i]
images.append(basename)
if sky_direction_scene == "RIGHT" or sky_direction_scene == "LEFT":
intrinsics.append([h, w, fy, fx, hh, hw]) # swapped intrinsics
else:
intrinsics.append([w, h, fx, fy, hw, hh])
trajectories.append(
pose @ rotated_to_cam
) # pose_cam_to_world @ rotated_to_cam = rotated(cam) to world
return sky_direction_scene, trajectories, intrinsics, images
def find_scene_orientation(poses_cam_to_world):
if len(poses_cam_to_world) > 0:
up_vector = sum(get_up_vectors(p) for p in poses_cam_to_world) / len(
poses_cam_to_world
)
right_vector = sum(get_right_vectors(p) for p in poses_cam_to_world) / len(
poses_cam_to_world
)
up_world = np.array([[0.0], [0.0], [1.0], [0.0]])
else:
up_vector = np.array([[0.0], [-1.0], [0.0], [0.0]])
right_vector = np.array([[1.0], [0.0], [0.0], [0.0]])
up_world = np.array([[0.0], [0.0], [1.0], [0.0]])
# value between 0, 180
device_up_to_world_up_angle = (
np.arccos(np.clip(np.dot(np.transpose(up_world), up_vector), -1.0, 1.0)).item()
* 180.0
/ np.pi
)
device_right_to_world_up_angle = (
np.arccos(
np.clip(np.dot(np.transpose(up_world), right_vector), -1.0, 1.0)
).item()
* 180.0
/ np.pi
)
up_closest_to_90 = abs(device_up_to_world_up_angle - 90.0) < abs(
device_right_to_world_up_angle - 90.0
)
if up_closest_to_90:
assert abs(device_up_to_world_up_angle - 90.0) < 45.0
# LEFT
if device_right_to_world_up_angle > 90.0:
sky_direction_scene = "LEFT"
cam_to_rotated_q = quaternion.from_rotation_vector(
[0.0, 0.0, math.pi / 2.0]
)
else:
# note that in metadata.csv RIGHT does not exist, but again it's not accurate...
# well, turns out there are scenes oriented like this
# for example Training/41124801
sky_direction_scene = "RIGHT"
cam_to_rotated_q = quaternion.from_rotation_vector(
[0.0, 0.0, -math.pi / 2.0]
)
else:
# right is close to 90
assert abs(device_right_to_world_up_angle - 90.0) < 45.0
if device_up_to_world_up_angle > 90.0:
sky_direction_scene = "DOWN"
cam_to_rotated_q = quaternion.from_rotation_vector([0.0, 0.0, math.pi])
else:
sky_direction_scene = "UP"
cam_to_rotated_q = quaternion.quaternion(1, 0, 0, 0)
cam_to_rotated = np.eye(4)
cam_to_rotated[:3, :3] = quaternion.as_rotation_matrix(cam_to_rotated_q)
rotated_to_cam = np.linalg.inv(cam_to_rotated)
return sky_direction_scene, rotated_to_cam
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
main(args.arkitscenes_dir, args.precomputed_pairs, args.output_dir)