liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
import struct
import numpy as np
import png
import re
import sys
import csv
from PIL import Image
import h5py
FLO_TAG_FLOAT = (
202021.25 # first 4 bytes in flo file; check for this when READING the file
)
FLO_TAG_STRING = "PIEH" # first 4 bytes in flo file; use this when WRITING the file
FLO_UNKNOWN_FLOW_THRESH = 1e9 # flo format threshold for unknown values
FLO_UNKNOWN_FLOW = 1e10 # value to use to represent unknown flow in flo file format
def readFlowFile(filepath):
"""read flow files in several formats. The resulting flow has shape height x width x 2.
For positions where there is no groundtruth available, the flow is set to np.nan.
Supports flo (Sintel), png (KITTI), npy (numpy), pfm (FlyingThings3D) and flo5 (Spring) file format.
filepath: path to the flow file
returns: flow with shape height x width x 2
"""
if filepath.endswith(".flo"):
return readFloFlow(filepath)
elif filepath.endswith(".png"):
return readPngFlow(filepath)
elif filepath.endswith(".npy"):
return readNpyFlow(filepath)
elif filepath.endswith(".pfm"):
return readPfmFlow(filepath)
elif filepath.endswith(".flo5"):
return readFlo5Flow(filepath)
else:
raise ValueError(f"readFlowFile: Unknown file format for {filepath}")
def writeFlowFile(flow, filepath):
"""write optical flow to file. Supports flo (Sintel), png (KITTI) and npy (numpy) file format.
flow: optical flow with shape height x width x 2. Invalid values should be represented as np.nan
filepath: file path where to write the flow
"""
if not filepath:
raise ValueError("writeFlowFile: empty filepath")
if len(flow.shape) != 3 or flow.shape[2] != 2:
raise IOError(
f"writeFlowFile {filepath}: expected shape height x width x 2 but received {flow.shape}"
)
if flow.shape[0] > flow.shape[1]:
print(
f"write flo file {filepath}: Warning: Are you writing an upright image? Expected shape height x width x 2, got {flow.shape}"
)
if filepath.endswith(".flo"):
return writeFloFlow(flow, filepath)
elif filepath.endswith(".png"):
return writePngFlow(flow, filepath)
elif filepath.endswith(".npy"):
return writeNpyFile(flow, filepath)
elif filepath.endswith(".flo5"):
return writeFlo5File(flow, filepath)
else:
raise ValueError(f"writeFlowFile: Unknown file format for {filepath}")
def readFloFlow(filepath):
"""read optical flow from file stored in .flo file format as used in the Sintel dataset (Butler et al., 2012)
filepath: path to file where to read from
returns: flow as a numpy array with shape height x width x 2
---
".flo" file format used for optical flow evaluation
Stores 2-band float image for horizontal (u) and vertical (v) flow components.
Floats are stored in little-endian order.
A flow value is considered "unknown" if either |u| or |v| is greater than 1e9.
bytes contents
0-3 tag: "PIEH" in ASCII, which in little endian happens to be the float 202021.25
(just a sanity check that floats are represented correctly)
4-7 width as an integer
8-11 height as an integer
12-end data (width*height*2*4 bytes total)
the float values for u and v, interleaved, in row order, i.e.,
u[row0,col0], v[row0,col0], u[row0,col1], v[row0,col1], ...
"""
if filepath is None:
raise IOError("read flo file: empty filename")
if not filepath.endswith(".flo"):
raise IOError(f"read flo file ({filepath}): extension .flo expected")
with open(filepath, "rb") as stream:
tag = struct.unpack("f", stream.read(4))[0]
width = struct.unpack("i", stream.read(4))[0]
height = struct.unpack("i", stream.read(4))[0]
if tag != FLO_TAG_FLOAT: # simple test for correct endian-ness
raise IOError(
f"read flo file({filepath}): wrong tag (possibly due to big-endian machine?)"
)
# another sanity check to see that integers were read correctly (99999 should do the trick...)
if width < 1 or width > 99999:
raise IOError(f"read flo file({filepath}): illegal width {width}")
if height < 1 or height > 99999:
raise IOError(f"read flo file({filepath}): illegal height {height}")
nBands = 2
flow = []
n = nBands * width
for _ in range(height):
data = stream.read(n * 4)
if data is None:
raise IOError(f"read flo file({filepath}): file is too short")
data = np.asarray(struct.unpack(f"{n}f", data))
data = data.reshape((width, nBands))
flow.append(data)
if stream.read(1) != b"":
raise IOError(f"read flo file({filepath}): file is too long")
flow = np.asarray(flow)
# unknown values are set to nan
flow[np.abs(flow) > FLO_UNKNOWN_FLOW_THRESH] = np.nan
return flow
def writeFloFlow(flow, filepath):
"""
write optical flow in .flo format to file as used in the Sintel dataset (Butler et al., 2012)
flow: optical flow with shape height x width x 2
filepath: optical flow file path to be saved
---
".flo" file format used for optical flow evaluation
Stores 2-band float image for horizontal (u) and vertical (v) flow components.
Floats are stored in little-endian order.
A flow value is considered "unknown" if either |u| or |v| is greater than 1e9.
bytes contents
0-3 tag: "PIEH" in ASCII, which in little endian happens to be the float 202021.25
(just a sanity check that floats are represented correctly)
4-7 width as an integer
8-11 height as an integer
12-end data (width*height*2*4 bytes total)
the float values for u and v, interleaved, in row order, i.e.,
u[row0,col0], v[row0,col0], u[row0,col1], v[row0,col1], ...
"""
height, width, nBands = flow.shape
with open(filepath, "wb") as f:
if f is None:
raise IOError(f"write flo file {filepath}: file could not be opened")
# write header
result = f.write(FLO_TAG_STRING.encode("ascii"))
result += f.write(struct.pack("i", width))
result += f.write(struct.pack("i", height))
if result != 12:
raise IOError(f"write flo file {filepath}: problem writing header")
# write content
n = nBands * width
for i in range(height):
data = flow[i, :, :].flatten()
data[np.isnan(data)] = FLO_UNKNOWN_FLOW
result = f.write(struct.pack(f"{n}f", *data))
if result != n * 4:
raise IOError(f"write flo file {filepath}: problem writing row {i}")
def readPngFlow(filepath):
"""read optical flow from file stored in png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
filepath: path to file where to read from
returns: flow as a numpy array with shape height x width x 2. Invalid values are represented as np.nan
"""
# adapted from https://github.com/liruoteng/OpticalFlowToolkit
flow_object = png.Reader(filename=filepath)
flow_direct = flow_object.asDirect()
flow_data = list(flow_direct[2])
(w, h) = flow_direct[3]["size"]
flow = np.zeros((h, w, 3), dtype=np.float64)
for i in range(len(flow_data)):
flow[i, :, 0] = flow_data[i][0::3]
flow[i, :, 1] = flow_data[i][1::3]
flow[i, :, 2] = flow_data[i][2::3]
invalid_idx = flow[:, :, 2] == 0
flow[:, :, 0:2] = (flow[:, :, 0:2] - 2**15) / 64.0
flow[invalid_idx, 0] = np.nan
flow[invalid_idx, 1] = np.nan
return flow[:, :, :2]
def writePngFlow(flow, filename):
"""write optical flow to file png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
flow: optical flow in shape height x width x 2, invalid values should be represented as np.nan
filepath: path to file where to write to
"""
flow = 64.0 * flow + 2**15
width = flow.shape[1]
height = flow.shape[0]
valid_map = np.ones([flow.shape[0], flow.shape[1], 1])
valid_map[np.isnan(flow[:, :, 0]) | np.isnan(flow[:, :, 1])] = 0
flow = np.nan_to_num(flow)
flow = np.concatenate([flow, valid_map], axis=-1)
flow = np.clip(flow, 0, 2**16 - 1)
flow = flow.astype(np.uint16)
flow = np.reshape(flow, (-1, width * 3))
with open(filename, "wb") as f:
writer = png.Writer(width=width, height=height, bitdepth=16, greyscale=False)
writer.write(f, flow)
def readNpyFlow(filepath):
"""read numpy array from file.
filepath: file to read from
returns: numpy array
"""
return np.load(filepath)
def writeNpyFile(arr, filepath):
"""write numpy array to file.
arr: numpy array to write
filepath: file to write to
"""
np.save(filepath, arr)
def writeFlo5File(flow, filename):
with h5py.File(filename, "w") as f:
f.create_dataset("flow", data=flow, compression="gzip", compression_opts=5)
def readFlo5Flow(filename):
with h5py.File(filename, "r") as f:
if "flow" not in f.keys():
raise IOError(
f"File {filename} does not have a 'flow' key. Is this a valid flo5 file?"
)
return f["flow"][()]
def readPfmFlow(filepath):
"""read optical flow from file stored in pfm file format as used in the FlyingThings3D (Mayer et al., 2016) dataset.
filepath: path to file where to read from
returns: flow as a numpy array with shape height x width x 2.
"""
flow = readPfmFile(filepath)
if len(flow.shape) != 3:
raise IOError(
f"read pfm flow: PFM file has wrong shape (assumed to be w x h x 3): {flow.shape}"
)
if flow.shape[2] != 3:
raise IOError(
f"read pfm flow: PFM file has wrong shape (assumed to be w x h x 3): {flow.shape}"
)
# remove third channel -> is all zeros
return flow[:, :, :2]
def readPfmFile(filepath):
"""
adapted from https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
"""
file = open(filepath, "rb")
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode("ascii") == "PF":
color = True
elif header.decode("ascii") == "Pf":
color = False
else:
raise Exception("Not a PFM file.")
dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception("Malformed PFM header.")
scale = float(file.readline().decode("ascii").rstrip())
if scale < 0: # little-endian
endian = "<"
scale = -scale
else:
endian = ">" # big-endian
data = np.fromfile(file, endian + "f")
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data # , scale
def writePfmFile(image, filepath):
"""
adapted from https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
"""
scale = 1
file = open(filepath, "wb")
color = None
if image.dtype.name != "float32":
raise Exception("Image dtype must be float32.")
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif (
len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
): # greyscale
color = False
else:
raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
file.write("PF\n" if color else "Pf\n".encode())
file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == "<" or endian == "=" and sys.byteorder == "little":
scale = -scale
file.write("%f\n".encode() % scale)
image.tofile(file)
def readDispFile(filepath):
"""read disparity (or disparity change) from file. The resulting numpy array has shape height x width.
For positions where there is no groundtruth available, the value is set to np.nan.
Supports png (KITTI), npy (numpy) and pfm (FlyingThings3D) file format.
filepath: path to the flow file
returns: disparity with shape height x width
"""
if filepath.endswith(".png"):
return readPngDisp(filepath)
elif filepath.endswith(".npy"):
return readNpyFlow(filepath)
elif filepath.endswith(".pfm"):
return readPfmDisp(filepath)
elif filepath.endswith(".dsp5"):
return readDsp5Disp(filepath)
else:
raise ValueError(f"readDispFile: Unknown file format for {filepath}")
def readPngDisp(filepath):
"""read disparity from file stored in png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
filepath: path to file where to read from
returns: disparity as a numpy array with shape height x width. Invalid values are represented as np.nan
"""
# adapted from https://github.com/liruoteng/OpticalFlowToolkit
image_object = png.Reader(filename=filepath)
image_direct = image_object.asDirect()
image_data = list(image_direct[2])
(w, h) = image_direct[3]["size"]
channel = len(image_data[0]) // w
if channel != 1:
raise IOError("read png disp: assumed channels to be 1!")
disp = np.zeros((h, w), dtype=np.float64)
for i in range(len(image_data)):
disp[i, :] = image_data[i][:]
disp[disp == 0] = np.nan
return disp[:, :] / 256.0
def readPfmDisp(filepath):
"""read disparity or disparity change from file stored in pfm file format as used in the FlyingThings3D (Mayer et al., 2016) dataset.
filepath: path to file where to read from
returns: disparity as a numpy array with shape height x width. Invalid values are represented as np.nan
"""
disp = readPfmFile(filepath)
if len(disp.shape) != 2:
raise IOError(
f"read pfm disp: PFM file has wrong shape (assumed to be w x h): {disp.shape}"
)
return disp
def writePngDisp(disp, filepath):
"""write disparity to png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
disp: disparity in shape height x width, invalid values should be represented as np.nan
filepath: path to file where to write to
"""
disp = 256 * disp
width = disp.shape[1]
height = disp.shape[0]
disp = np.clip(disp, 0, 2**16 - 1)
disp = np.nan_to_num(disp).astype(np.uint16)
disp = np.reshape(disp, (-1, width))
with open(filepath, "wb") as f:
writer = png.Writer(width=width, height=height, bitdepth=16, greyscale=True)
writer.write(f, disp)
def writeDsp5File(disp, filename):
with h5py.File(filename, "w") as f:
f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5)
def readDsp5Disp(filename):
with h5py.File(filename, "r") as f:
if "disparity" not in f.keys():
raise IOError(
f"File {filename} does not have a 'disparity' key. Is this a valid dsp5 file?"
)
return f["disparity"][()]
def writeDispFile(disp, filepath):
"""write disparity to file. Supports png (KITTI) and npy (numpy) file format.
disp: disparity with shape height x width. Invalid values should be represented as np.nan
filepath: file path where to write the flow
"""
if not filepath:
raise ValueError("writeDispFile: empty filepath")
if len(disp.shape) != 2:
raise IOError(
f"writeDispFile {filepath}: expected shape height x width but received {disp.shape}"
)
if disp.shape[0] > disp.shape[1]:
print(
f"writeDispFile {filepath}: Warning: Are you writing an upright image? Expected shape height x width, got {disp.shape}"
)
if filepath.endswith(".png"):
writePngDisp(disp, filepath)
elif filepath.endswith(".npy"):
writeNpyFile(disp, filepath)
elif filepath.endswith(".dsp5"):
writeDsp5File(disp, filepath)
def readKITTIObjMap(filepath):
assert filepath.endswith(".png")
return np.asarray(Image.open(filepath)) > 0
def readKITTIIntrinsics(filepath, image=2):
assert filepath.endswith(".txt")
with open(filepath) as f:
reader = csv.reader(f, delimiter=" ")
for row in reader:
if row[0] == f"K_{image:02d}:":
K = np.array(row[1:], dtype=np.float32).reshape(3, 3)
kvec = np.array([K[0, 0], K[1, 1], K[0, 2], K[1, 2]])
return kvec
def writePngMapFile(map_, filename):
Image.fromarray(map_).save(filename)