vmem / extern /CUT3R /datasets_preprocess /custom_convert2TUM.py
liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
import os
import json
import shutil
import numpy as np
import cv2 as cv
import imageio
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor, as_completed
import open3d as o3d
import scipy.ndimage
import pickle
# Set environment variable to limit OpenBLAS threads
os.environ["OPENBLAS_NUM_THREADS"] = "1"
DEPTH_SCALE_FACTOR = 5000
# Point cloud from depth
def pointcloudify_depth(depth, intrinsics, dist_coeff, undistort=True):
shape = depth.shape[::-1]
if undistort:
undist_intrinsics, _ = cv.getOptimalNewCameraMatrix(
intrinsics, dist_coeff, shape, 1, shape
)
inv_undist_intrinsics = np.linalg.inv(undist_intrinsics)
map_x, map_y = cv.initUndistortRectifyMap(
intrinsics, dist_coeff, None, undist_intrinsics, shape, cv.CV_32FC1
)
undist_depth = cv.remap(depth, map_x, map_y, cv.INTER_NEAREST)
else:
inv_undist_intrinsics = np.linalg.inv(intrinsics)
undist_depth = depth
# Generate x,y grid for H x W image
grid_x, grid_y = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]))
grid = np.stack((grid_x, grid_y, np.ones_like(grid_x)), axis=-1)
# Reshape and compute local grid
grid_flat = grid.reshape(-1, 3).T
local_grid = inv_undist_intrinsics @ grid_flat
# Multiply by depth
local_grid = local_grid.T * undist_depth.reshape(-1, 1)
return local_grid.astype(np.float32)
def project_pcd_to_depth(pcd, undist_intrinsics, img_size, config):
h, w = img_size
points = np.asarray(pcd.points)
d = points[:, 2]
normalized_points = points / points[:, 2][:, np.newaxis]
proj_pcd = np.round((undist_intrinsics @ normalized_points.T).T).astype(np.int64)
proj_mask = (
(proj_pcd[:, 0] >= 0)
& (proj_pcd[:, 0] < w)
& (proj_pcd[:, 1] >= 0)
& (proj_pcd[:, 1] < h)
)
proj_pcd = proj_pcd[proj_mask]
d = d[proj_mask]
pcd_image = np.zeros((config["res_h"], config["res_w"]), dtype=np.float32)
pcd_image[proj_pcd[:, 1], proj_pcd[:, 0]] = d
return pcd_image
def smooth_depth(depth):
MAX_DEPTH_VAL = 1e5
KERNEL_SIZE = 11
depth = depth.copy()
depth[depth == 0] = MAX_DEPTH_VAL
smoothed_depth = scipy.ndimage.minimum_filter(depth, KERNEL_SIZE)
smoothed_depth[smoothed_depth == MAX_DEPTH_VAL] = 0
return smoothed_depth
def align_rgb_depth(rgb, depth, roi, config, rgb_cnf, config_dict, T):
# Undistort rgb image
undist_rgb = cv.undistort(
rgb,
rgb_cnf["intrinsics"],
rgb_cnf["dist_coeff"],
None,
rgb_cnf["undist_intrinsics"],
)
# Create point cloud from depth
pcd = o3d.geometry.PointCloud()
points = pointcloudify_depth(
depth, config_dict["depth"]["dist_mtx"], config_dict["depth"]["dist_coef"]
)
pcd.points = o3d.utility.Vector3dVector(points)
# Align point cloud with depth reference frame
pcd.transform(T)
# Project aligned point cloud to rgb
aligned_depth = project_pcd_to_depth(
pcd, rgb_cnf["undist_intrinsics"], rgb.shape[:2], config
)
smoothed_aligned_depth = smooth_depth(aligned_depth)
x, y, w, h = roi
depth_res = smoothed_aligned_depth[y : y + h, x : x + w]
rgb_res = undist_rgb[y : y + h, x : x + w]
return rgb_res, depth_res, rgb_cnf["undist_intrinsics"]
def process_pair(args):
(
pair,
smartphone_folder,
azure_depth_folder,
final_folder,
config,
rgb_cnf,
config_dict,
T,
) = args
try:
rgb_image = cv.imread(os.path.join(smartphone_folder, f"{pair[0]}.png"))
depth_array = np.load(
os.path.join(azure_depth_folder, f"{pair[1]}.npy"), allow_pickle=True
)
rgb_image_aligned, depth_array_aligned, intrinsics = align_rgb_depth(
rgb_image,
depth_array,
(0, 0, config["res_w"], config["res_h"]),
config,
rgb_cnf,
config_dict,
T,
)
# Save rgb as 8-bit png
cv.imwrite(
os.path.join(final_folder, "rgb", f"{pair[0]}.png"), rgb_image_aligned
)
# # Save depth as 16-bit unsigned int with scale factor
# depth_array_aligned = (depth_array_aligned *
# DEPTH_SCALE_FACTOR).astype(np.uint16)
# imageio.imwrite(os.path.join(final_folder, 'depth', f"{pair[1]}.png"), depth_array_aligned)
np.save(
os.path.join(final_folder, "depth", f"{pair[0]}.npy"), depth_array_aligned
)
np.savez(
os.path.join(final_folder, "cam", f"{pair[0]}.npz"), intrinsics=intrinsics
)
except Exception as e:
return f"Error processing pair {pair}: {e}"
return None
def main():
DATA_DIR_ = "data_smartportraits/SmartPortraits" # REPLACE WITH YOUR OWN DATA PATH!
DATA_DIR = DATA_DIR_.rstrip("/")
print(f"{DATA_DIR_} {DATA_DIR}/")
# Folder where the data in TUM format will be put
curr_dir = os.path.dirname(os.path.abspath(__file__))
with open(os.path.join(curr_dir, "config.json")) as conf_f:
config = json.load(conf_f)
# Pre-load shared data
with open(os.path.join(curr_dir, config["depth_conf"]), "rb") as config_f:
config_dict = pickle.load(config_f)
rgb_cnf = np.load(
os.path.join(curr_dir, config["rgb_intristics"]), allow_pickle=True
).item()
T = np.load(os.path.join(curr_dir, config["transform_intristics"]))
final_root = "processed_smartportraits1" # REPLACE WITH YOUR OWN DATA PATH!
seqs = []
for scene in os.listdir(DATA_DIR):
scene_path = os.path.join(DATA_DIR, scene)
if not os.path.isdir(scene_path):
continue
for s in os.listdir(scene_path):
s_path = os.path.join(scene_path, s)
if not os.path.isdir(s_path):
continue
for date in os.listdir(s_path):
date_path = os.path.join(s_path, date)
if os.path.isdir(date_path):
seqs.append((scene, s, date))
for seq in tqdm(seqs):
scene, s, date = seq
dataset_path = os.path.join(DATA_DIR, scene, s, date)
final_folder = os.path.join(final_root, "_".join([scene, s, date]))
azure_depth_folder = os.path.join(dataset_path, "_azure_depth_image_raw")
smartphone_folder = os.path.join(dataset_path, "smartphone_video_frames")
depth_files = [
file for file in os.listdir(azure_depth_folder) if file.endswith(".npy")
]
depth_ts = np.array([int(file.split(".")[0]) for file in depth_files])
depth_ts.sort()
rgb_files = [
file for file in os.listdir(smartphone_folder) if file.endswith(".png")
]
rgb_ts = np.array([int(file.split(".")[0]) for file in rgb_files])
rgb_ts.sort()
print(
f"Depth timestamps from {depth_ts[0]} to {depth_ts[-1]} (cnt {len(depth_ts)})"
)
print(f"RGB timestamps from {rgb_ts[0]} to {rgb_ts[-1]} (cnt {len(rgb_ts)})")
# Build correspondences between depth and rgb by nearest neighbour algorithm
rgbd_pairs = []
for depth_t in depth_ts:
idx = np.argmin(np.abs(rgb_ts - depth_t))
closest_rgb_t = rgb_ts[idx]
rgbd_pairs.append((closest_rgb_t, depth_t))
# Prepare folder infrastructure
if os.path.exists(final_folder):
shutil.rmtree(final_folder)
os.makedirs(os.path.join(final_folder, "depth"), exist_ok=True)
os.makedirs(os.path.join(final_folder, "rgb"), exist_ok=True)
os.makedirs(os.path.join(final_folder, "cam"), exist_ok=True)
# Prepare arguments for processing
tasks = [
(
pair,
smartphone_folder,
azure_depth_folder,
final_folder,
config,
rgb_cnf,
config_dict,
T,
)
for pair in rgbd_pairs
]
num_workers = os.cpu_count()
with ProcessPoolExecutor(max_workers=num_workers) as executor:
futures = {executor.submit(process_pair, task): task[0] for task in tasks}
for future in tqdm(
as_completed(futures),
total=len(futures),
desc=f"Processing {scene}_{s}_{date}",
):
error = future.result()
if error:
print(error)
if __name__ == "__main__":
main()