liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utility functions for global alignment
# --------------------------------------------------------
import torch
import torch.nn as nn
import numpy as np
def edge_str(i, j):
return f"{i}_{j}"
def i_j_ij(ij):
return edge_str(*ij), ij
def edge_conf(conf_i, conf_j, edge):
return float(conf_i[edge].mean() * conf_j[edge].mean())
def compute_edge_scores(edges, conf_i, conf_j):
return {(i, j): edge_conf(conf_i, conf_j, e) for e, (i, j) in edges}
def NoGradParamDict(x):
assert isinstance(x, dict)
return nn.ParameterDict(x).requires_grad_(False)
def get_imshapes(edges, pred_i, pred_j):
n_imgs = max(max(e) for e in edges) + 1
imshapes = [None] * n_imgs
for e, (i, j) in enumerate(edges):
shape_i = tuple(pred_i[e].shape[0:2])
shape_j = tuple(pred_j[e].shape[0:2])
if imshapes[i]:
assert imshapes[i] == shape_i, f"incorrect shape for image {i}"
if imshapes[j]:
assert imshapes[j] == shape_j, f"incorrect shape for image {j}"
imshapes[i] = shape_i
imshapes[j] = shape_j
return imshapes
def get_conf_trf(mode):
if mode == "log":
def conf_trf(x):
return x.log()
elif mode == "sqrt":
def conf_trf(x):
return x.sqrt()
elif mode == "m1":
def conf_trf(x):
return x - 1
elif mode in ("id", "none"):
def conf_trf(x):
return x
else:
raise ValueError(f"bad mode for {mode=}")
return conf_trf
def l2_dist(a, b, weight):
return (a - b).square().sum(dim=-1) * weight
def l1_dist(a, b, weight):
return (a - b).norm(dim=-1) * weight
ALL_DISTS = dict(l1=l1_dist, l2=l2_dist)
def signed_log1p(x):
sign = torch.sign(x)
return sign * torch.log1p(torch.abs(x))
def signed_expm1(x):
sign = torch.sign(x)
return sign * torch.expm1(torch.abs(x))
def cosine_schedule(t, lr_start, lr_end):
assert 0 <= t <= 1
return lr_end + (lr_start - lr_end) * (1 + np.cos(t * np.pi)) / 2
def linear_schedule(t, lr_start, lr_end):
assert 0 <= t <= 1
return lr_start + (lr_end - lr_start) * t