vmem / utils /util.py
liguang0115's picture
Add initial project structure with core files, configurations, and sample images
2df809d
raw
history blame
45.5 kB
from typing import Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
import kornia
from matplotlib import cm
from torchvision.io import write_video
from PIL import Image, ImageOps
import os
from typing import Union, Tuple, List
import math
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
DEFAULT_FOV_RAD = 0.9424777960769379 # 54 degrees by default
def get_default_intrinsics(
fov_rad=DEFAULT_FOV_RAD,
aspect_ratio=1.0,
):
if not isinstance(fov_rad, torch.Tensor):
fov_rad = torch.tensor(
[fov_rad] if isinstance(fov_rad, (int, float)) else fov_rad
)
if aspect_ratio >= 1.0: # W >= H
focal_x = 0.5 / torch.tan(0.5 * fov_rad)
focal_y = focal_x * aspect_ratio
else: # W < H
focal_y = 0.5 / torch.tan(0.5 * fov_rad)
focal_x = focal_y / aspect_ratio
intrinsics = focal_x.new_zeros((focal_x.shape[0], 3, 3))
intrinsics[:, torch.eye(3, device=focal_x.device, dtype=bool)] = torch.stack(
[focal_x, focal_y, torch.ones_like(focal_x)], dim=-1
)
intrinsics[:, :, -1] = torch.tensor(
[0.5, 0.5, 1.0], device=focal_x.device, dtype=focal_x.dtype
)
return intrinsics
def to_hom(X):
# get homogeneous coordinates of the input
X_hom = torch.cat([X, torch.ones_like(X[..., :1])], dim=-1)
return X_hom
def to_hom_pose(pose):
# get homogeneous coordinates of the input pose
if pose.shape[-2:] == (3, 4):
pose_hom = torch.eye(4, device=pose.device)[None].repeat(pose.shape[0], 1, 1)
pose_hom[:, :3, :] = pose
return pose_hom
return pose
def get_image_grid(img_h, img_w):
# add 0.5 is VERY important especially when your img_h and img_w
# is not very large (e.g., 72)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
y_range = torch.arange(img_h, dtype=torch.float32).add_(0.5)
x_range = torch.arange(img_w, dtype=torch.float32).add_(0.5)
Y, X = torch.meshgrid(y_range, x_range, indexing="ij") # [H,W]
xy_grid = torch.stack([X, Y], dim=-1).view(-1, 2) # [HW,2]
return to_hom(xy_grid) # [HW,3]
def img2cam(X, cam_intr):
return X @ cam_intr.inverse().transpose(-1, -2)
def cam2world(X, pose):
X_hom = to_hom(X)
pose_inv = torch.linalg.inv(to_hom_pose(pose))[..., :3, :4]
return X_hom @ pose_inv.transpose(-1, -2)
def get_center_and_ray(img_h, img_w, pose, intr): # [HW,2]
# given the intrinsic/extrinsic matrices, get the camera center and ray directions]
# assert(opt.camera.model=="perspective")
# compute center and ray
grid_img = get_image_grid(img_h, img_w) # [HW,3]
grid_3D_cam = img2cam(grid_img.to(intr.device), intr.float()) # [B,HW,3]
center_3D_cam = torch.zeros_like(grid_3D_cam) # [B,HW,3]
# transform from camera to world coordinates
grid_3D = cam2world(grid_3D_cam, pose) # [B,HW,3]
center_3D = cam2world(center_3D_cam, pose) # [B,HW,3]
ray = grid_3D - center_3D # [B,HW,3]
return center_3D, ray, grid_3D_cam
def get_plucker_coordinates(
extrinsics_src,
extrinsics,
intrinsics=None,
fov_rad=DEFAULT_FOV_RAD,
target_size=[72, 72],
):
# Support for batch dimension
has_batch_dim = len(extrinsics.shape) == 4
if has_batch_dim:
# [B, N, 4, 4] -> reshape to handle batch
batch_size, num_cameras = extrinsics.shape[0:2]
extrinsics_flat = extrinsics.reshape(-1, *extrinsics.shape[2:])
# Handle extrinsics_src appropriately
if len(extrinsics_src.shape) == 3: # [B, 4, 4]
extrinsics_src_expanded = extrinsics_src.unsqueeze(1).expand(-1, num_cameras, -1, -1)
extrinsics_src_flat = extrinsics_src_expanded.reshape(-1, *extrinsics_src.shape[1:])
else: # [4, 4] - single extrinsics_src for all batches
extrinsics_src_flat = extrinsics_src.expand(batch_size * num_cameras, -1, -1)
# Handle intrinsics for batch
if intrinsics is None:
intrinsics = get_default_intrinsics(fov_rad).to(extrinsics.device)
intrinsics = intrinsics.expand(batch_size * num_cameras, -1, -1)
elif len(intrinsics.shape) == 3: # [N, 3, 3]
if intrinsics.shape[0] == num_cameras:
intrinsics = intrinsics.expand(batch_size, -1, -1, -1).reshape(-1, *intrinsics.shape[1:])
else:
intrinsics = intrinsics.expand(batch_size * num_cameras, -1, -1)
elif len(intrinsics.shape) == 4: # [B, N, 3, 3]
intrinsics = intrinsics.reshape(-1, *intrinsics.shape[2:])
else:
# Original behavior for non-batch input
extrinsics_flat = extrinsics
extrinsics_src_flat = extrinsics_src
if intrinsics is None:
intrinsics = get_default_intrinsics(fov_rad).to(extrinsics.device)
# Process intrinsics normalization
if not (
torch.all(intrinsics[:, :2, -1] >= 0)
and torch.all(intrinsics[:, :2, -1] <= 1)
):
intrinsics[:, :2] /= intrinsics.new_tensor(target_size).view(1, -1, 1) * 8
# Ensure normalized intrinsics
assert (
torch.all(intrinsics[:, :2, -1] >= 0)
and torch.all(intrinsics[:, :2, -1] <= 1)
), "Intrinsics should be expressed in resolution-independent normalized image coordinates."
c2w_src = torch.linalg.inv(extrinsics_src_flat)
# transform coordinates from the source camera's coordinate system to the coordinate system of the respective camera
extrinsics_rel = torch.einsum(
"vnm,vmp->vnp", extrinsics_flat, c2w_src
)
intrinsics[:, :2] *= extrinsics_flat.new_tensor(
[
target_size[1], # w
target_size[0], # h
]
).view(1, -1, 1)
centers, rays, grid_cam = get_center_and_ray(
img_h=target_size[0],
img_w=target_size[1],
pose=extrinsics_rel[:, :3, :],
intr=intrinsics,
)
rays = torch.nn.functional.normalize(rays, dim=-1)
plucker = torch.cat((rays, torch.cross(centers, rays, dim=-1)), dim=-1)
plucker = plucker.permute(0, 2, 1).reshape(plucker.shape[0], -1, *target_size)
# Reshape back to batch dimension if needed
if has_batch_dim:
plucker = plucker.reshape(batch_size, num_cameras, *plucker.shape[1:])
return plucker
def get_value_dict(
curr_imgs,
curr_imgs_clip,
curr_input_frame_indices,
curr_c2ws,
curr_Ks,
curr_input_camera_indices,
all_c2ws,
camera_scale,
):
assert sorted(curr_input_camera_indices) == sorted(
range(len(curr_input_camera_indices))
)
H, W, T, F = curr_imgs.shape[-2], curr_imgs.shape[-1], len(curr_imgs), 8
value_dict = {}
value_dict["cond_frames_without_noise"] = curr_imgs_clip[curr_input_frame_indices]
value_dict["cond_frames"] = curr_imgs + 0.0 * torch.randn_like(curr_imgs)
value_dict["cond_frames_mask"] = torch.zeros(T, dtype=torch.bool)
value_dict["cond_frames_mask"][curr_input_frame_indices] = True
value_dict["cond_aug"] = 0.0
if curr_c2ws.shape[-1] == 3:
c2w = to_hom_pose(curr_c2ws.float())
else:
c2w = curr_c2ws
w2c = torch.linalg.inv(c2w)
# camera centering
ref_c2ws = all_c2ws
camera_dist_2med = torch.norm(
ref_c2ws[:, :3, 3] - ref_c2ws[:, :3, 3].median(0, keepdim=True).values,
dim=-1,
)
valid_mask = camera_dist_2med <= torch.clamp(
torch.quantile(camera_dist_2med, 0.97) * 10,
max=1e6,
)
c2w[:, :3, 3] -= ref_c2ws[valid_mask, :3, 3].mean(0, keepdim=True)
w2c = torch.linalg.inv(c2w)
# camera normalization
camera_dists = c2w[:, :3, 3].clone()
translation_scaling_factor = (
camera_scale
if torch.isclose(
torch.norm(camera_dists[0]),
torch.zeros(1),
atol=1e-5,
).any()
else (camera_scale / torch.norm(camera_dists[0]))
)
w2c[:, :3, 3] *= translation_scaling_factor
c2w[:, :3, 3] *= translation_scaling_factor
value_dict["plucker_coordinate"] = get_plucker_coordinates(
extrinsics_src=w2c[0],
extrinsics=w2c,
intrinsics=curr_Ks.float().clone(),
target_size=(H // F, W // F),
)
value_dict["c2w"] = c2w
value_dict["K"] = curr_Ks
value_dict["camera_mask"] = torch.zeros(T, dtype=torch.bool)
value_dict["camera_mask"][curr_input_camera_indices] = True
return value_dict
def parse_meta_data(file_path, image_height=288, image_width=512):
with open(file_path, 'r') as file:
lines = file.readlines()
# First line is the video URL
video_url = lines[0].strip()
line = lines[1]
data = line.strip().split()
# Construct the camera intrinsics matrix K
focal_length_x = float(data[1])
focal_length_y = float(data[2])
principal_point_x = float(data[3])
principal_point_y = float(data[4])
original_K = [
[focal_length_x, 0, principal_point_x],
[0, focal_length_y, principal_point_y],
[0, 0, 1]
]
K = [
[focal_length_x * image_width, 0, principal_point_x * image_width],
[0, focal_length_y * image_height, principal_point_y * image_height],
[0, 0, 1]
]
# Initialize a list to store frame data
timestamp_to_c2ws = {}
timestamps = []
# Process each frame line
for line in lines[1:]:
data = line.strip().split()
timestamp = int(data[0])
R_t = [float(x) for x in data[7:]]
P = [
R_t[0:4],
R_t[4:8],
R_t[8:12],
[0, 0, 0, 1]
]
timestamp_to_c2ws[timestamp] = np.array(P)
timestamps.append(timestamp)
return timestamps, np.array(K), timestamp_to_c2ws, original_K
def get_wh_with_fixed_shortest_side(w, h, size):
# size is smaller or equal to zero, we return original w h
if size is None or size <= 0:
return w, h
if w < h:
new_w = size
new_h = int(size * h / w)
else:
new_h = size
new_w = int(size * w / h)
return new_w, new_h
def get_resizing_factor(
target_shape: Tuple[int, int], # H, W
current_shape: Tuple[int, int], # H, W
cover_target: bool = True,
# If True, the output shape will fully cover the target shape.
# If No, the target shape will fully cover the output shape.
) -> float:
r_bound = target_shape[1] / target_shape[0]
aspect_r = current_shape[1] / current_shape[0]
if r_bound >= 1.0:
if cover_target:
if aspect_r >= r_bound:
factor = min(target_shape) / min(current_shape)
elif aspect_r < 1.0:
factor = max(target_shape) / min(current_shape)
else:
factor = max(target_shape) / max(current_shape)
else:
if aspect_r >= r_bound:
factor = max(target_shape) / max(current_shape)
elif aspect_r < 1.0:
factor = min(target_shape) / max(current_shape)
else:
factor = min(target_shape) / min(current_shape)
else:
if cover_target:
if aspect_r <= r_bound:
factor = min(target_shape) / min(current_shape)
elif aspect_r > 1.0:
factor = max(target_shape) / min(current_shape)
else:
factor = max(target_shape) / max(current_shape)
else:
if aspect_r <= r_bound:
factor = max(target_shape) / max(current_shape)
elif aspect_r > 1.0:
factor = min(target_shape) / max(current_shape)
else:
factor = min(target_shape) / min(current_shape)
return factor
def transform_img_and_K(
image: torch.Tensor,
size: Union[int, Tuple[int, int]],
scale: float = 1.0,
center: Tuple[float, float] = (0.5, 0.5),
K: Union[torch.Tensor, np.ndarray, None] = None,
size_stride: int = 1,
mode: str = "crop",
):
assert mode in [
"crop",
"pad",
"stretch",
], f"mode should be one of ['crop', 'pad', 'stretch'], got {mode}"
h, w = image.shape[-2:]
if isinstance(size, (tuple, list)):
# => if size is a tuple or list, we first rescale to fully cover the `size`
# area and then crop the `size` area from the rescale image
W, H = size
else:
# => if size is int, we rescale the image to fit the shortest side to size
# => if size is None, no rescaling is applied
W, H = get_wh_with_fixed_shortest_side(w, h, size)
W, H = (
math.floor(W / size_stride + 0.5) * size_stride,
math.floor(H / size_stride + 0.5) * size_stride,
)
if mode == "stretch":
rh, rw = H, W
else:
rfs = get_resizing_factor(
(H, W),
(h, w),
cover_target=mode != "pad",
)
(rh, rw) = [int(np.ceil(rfs * s)) for s in (h, w)]
rh, rw = int(rh / scale), int(rw / scale)
image = torch.nn.functional.interpolate(
image, (rh, rw), mode="area", antialias=False
)
cy_center = int(center[1] * image.shape[-2])
cx_center = int(center[0] * image.shape[-1])
if mode != "pad":
ct = max(0, cy_center - H // 2)
cl = max(0, cx_center - W // 2)
ct = min(ct, image.shape[-2] - H)
cl = min(cl, image.shape[-1] - W)
image = TF.crop(image, top=ct, left=cl, height=H, width=W)
pl, pt = 0, 0
else:
pt = max(0, H // 2 - cy_center)
pl = max(0, W // 2 - cx_center)
pb = max(0, H - pt - image.shape[-2])
pr = max(0, W - pl - image.shape[-1])
image = TF.pad(
image,
[pl, pt, pr, pb],
)
cl, ct = 0, 0
if K is not None:
K = K.clone()
# K[:, :2, 2] += K.new_tensor([pl, pt])
if torch.all(K[:, :2, -1] >= 0) and torch.all(K[:, :2, -1] <= 1):
K[:, :2] *= K.new_tensor([rw, rh])[None, :, None] # normalized K
else:
K[:, :2] *= K.new_tensor([rw / w, rh / h])[None, :, None] # unnormalized K
K[:, :2, 2] += K.new_tensor([pl - cl, pt - ct])
return image, K
def load_img_and_K(
image_path_or_size: Union[str, torch.Size],
size: Optional[Union[int, Tuple[int, int]]],
scale: float = 1.0,
center: Tuple[float, float] = (0.5, 0.5),
K: Union[torch.Tensor, np.ndarray, None] = None,
size_stride: int = 1,
center_crop: bool = False,
image_as_tensor: bool = True,
context_rgb: Union[np.ndarray, None] = None,
device: str = "cuda",
):
if isinstance(image_path_or_size, torch.Size):
image = Image.new("RGBA", image_path_or_size[::-1])
else:
image = Image.open(image_path_or_size).convert("RGBA")
w, h = image.size
if size is None:
size = (w, h)
image = np.array(image).astype(np.float32) / 255
if image.shape[-1] == 4:
rgb, alpha = image[:, :, :3], image[:, :, 3:]
if context_rgb is not None:
image = rgb * alpha + context_rgb * (1 - alpha)
else:
image = rgb * alpha + (1 - alpha)
image = image.transpose(2, 0, 1)
image = torch.from_numpy(image).to(dtype=torch.float32)
image = image.unsqueeze(0)
if isinstance(size, (tuple, list)):
# => if size is a tuple or list, we first rescale to fully cover the `size`
# area and then crop the `size` area from the rescale image
W, H = size
else:
# => if size is int, we rescale the image to fit the shortest side to size
# => if size is None, no rescaling is applied
W, H = get_wh_with_fixed_shortest_side(w, h, size)
W, H = (
math.floor(W / size_stride + 0.5) * size_stride,
math.floor(H / size_stride + 0.5) * size_stride,
)
rfs = get_resizing_factor((math.floor(H * scale), math.floor(W * scale)), (h, w))
resize_size = rh, rw = [int(np.ceil(rfs * s)) for s in (h, w)]
image = torch.nn.functional.interpolate(
image, resize_size, mode="area", antialias=False
)
if scale < 1.0:
pw = math.ceil((W - resize_size[1]) * 0.5)
ph = math.ceil((H - resize_size[0]) * 0.5)
image = F.pad(image, (pw, pw, ph, ph), "constant", 1.0)
cy_center = int(center[1] * image.shape[-2])
cx_center = int(center[0] * image.shape[-1])
if center_crop:
side = min(H, W)
ct = max(0, cy_center - side // 2)
cl = max(0, cx_center - side // 2)
ct = min(ct, image.shape[-2] - side)
cl = min(cl, image.shape[-1] - side)
image = TF.crop(image, top=ct, left=cl, height=side, width=side)
else:
ct = max(0, cy_center - H // 2)
cl = max(0, cx_center - W // 2)
ct = min(ct, image.shape[-2] - H)
cl = min(cl, image.shape[-1] - W)
image = TF.crop(image, top=ct, left=cl, height=H, width=W)
if K is not None:
K = K.clone()
if torch.all(K[:2, -1] >= 0) and torch.all(K[:2, -1] <= 1):
K[:2] *= K.new_tensor([rw, rh])[:, None] # normalized K
else:
K[:2] *= K.new_tensor([rw / w, rh / h])[:, None] # unnormalized K
K[:2, 2] -= K.new_tensor([cl, ct])
if image_as_tensor:
# tensor of shape (1, 3, H, W) with values ranging from (-1, 1)
image = image.to(device) * 2.0 - 1.0
else:
# PIL Image with values ranging from (0, 255)
image = image.permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).astype(np.uint8))
return image, K
def geodesic_distance(extrinsic1: Union[np.ndarray, torch.Tensor],
extrinsic2: Union[np.ndarray, torch.Tensor],
weight_translation: float = 0.01,):
"""
Computes the geodesic distance between two camera poses in SE(3).
Parameters:
extrinsic1 (Union[np.ndarray, torch.Tensor]): 4x4 extrinsic matrix of the first pose.
extrinsic2 (Union[np.ndarray, torch.Tensor]): 4x4 extrinsic matrix of the second pose.
Returns:
Union[float, torch.Tensor]: Geodesic distance between the two poses.
"""
if torch.is_tensor(extrinsic1):
# Extract the rotation and translation components
R1 = extrinsic1[:3, :3]
t1 = extrinsic1[:3, 3]
R2 = extrinsic2[:3, :3]
t2 = extrinsic2[:3, 3]
# Compute the translation distance (Euclidean distance)
translation_distance = torch.norm(t1 - t2)
# Compute the relative rotation matrix
R_relative = torch.matmul(R1.T, R2)
# Compute the angular distance from the trace of the relative rotation matrix
trace_value = torch.trace(R_relative)
# Clamp the trace value to avoid numerical issues
trace_value = torch.clamp(trace_value, -1.0, 3.0)
angular_distance = torch.acos((trace_value - 1) / 2)
else:
# Extract the rotation and translation components
R1 = extrinsic1[:3, :3]
t1 = extrinsic1[:3, 3]
R2 = extrinsic2[:3, :3]
t2 = extrinsic2[:3, 3]
# Compute the translation distance (Euclidean distance)
translation_distance = np.linalg.norm(t1 - t2)
# Compute the relative rotation matrix
R_relative = np.dot(R1.T, R2)
# Compute the angular distance from the trace of the relative rotation matrix
trace_value = np.trace(R_relative)
# Clamp the trace value to avoid numerical issues
trace_value = np.clip(trace_value, -1.0, 3.0)
angular_distance = np.arccos((trace_value - 1) / 2)
# Combine the two distances
geodesic_dist = translation_distance*weight_translation + angular_distance
return geodesic_dist
def inverse_geodesic_distance(extrinsic1,
extrinsic2,
weight_translation=0.01):
"""
Computes the inverse geodesic distance between two camera poses in SE(3).
Parameters:
extrinsic1 (np.ndarray): 4x4 extrinsic matrix of the first pose.
extrinsic2 (np.ndarray): 4x4 extrinsic matrix of the second pose.
Returns:
float: Inverse geodesic distance between the two poses.
"""
# Compute the geodesic distance
geodesic_dist = geodesic_distance(extrinsic1, extrinsic2, weight_translation)
# Compute the inverse geodesic distance
inverse_geodesic_dist = 1.0 / (geodesic_dist + 1e-6)
return inverse_geodesic_dist
def average_camera_pose(camera_poses):
"""
Compute a better average of camera poses in SE(3).
Args:
camera_poses: List or array of camera poses, each a 4x4 matrix
Returns:
Average camera pose as a 4x4 matrix
"""
# Extract rotation and translation components
rotations = camera_poses[:, :3, :3].detach().cpu().numpy()
translations = camera_poses[:, :3, 3].detach().cpu().numpy()
# Average translation with simple mean
avg_translation = np.mean(translations, axis=0)
# Convert rotations to quaternions for better averaging
import scipy.spatial.transform as transform
quats = [transform.Rotation.from_matrix(R).as_quat() for R in rotations]
# Ensure quaternions are in the same hemisphere to avoid issues with averaging
for i in range(1, len(quats)):
if np.dot(quats[0], quats[i]) < 0:
quats[i] = -quats[i]
# Average the quaternions and convert back to rotation matrix
avg_quat = np.mean(quats, axis=0)
avg_quat = avg_quat / np.linalg.norm(avg_quat) # Normalize
avg_rotation = transform.Rotation.from_quat(avg_quat).as_matrix()
# Construct the average pose
avg_pose = np.eye(4)
avg_pose[:3, :3] = avg_rotation
avg_pose[:3, 3] = avg_translation
return avg_pose
def encode_image(
image,
image_encoder,
device,
dtype,
) -> torch.Tensor:
image = image.to(device=device, dtype=dtype)
image_embeddings = image_encoder(image)
return image_embeddings
def encode_vae_image(
image,
vae,
device,
dtype,
):
image = image.to(device=device, dtype=dtype)
image_latents = vae.encode(image, 1)
return image_latents
def do_sample(
model,
ae,
denoiser,
sampler,
c,
uc,
c2w,
K,
cond_frames_mask,
H=576,
W=768,
C=4,
F=8,
T=8,
cfg=2.0,
decoding_t=1,
verbose=True,
global_pbar=None,
return_latents=False,
device: str = "cuda",
**_,
):
num_samples = [1, T]
with torch.inference_mode(), torch.autocast("cuda"):
additional_model_inputs = {"num_frames": T}
additional_sampler_inputs = {
"c2w": c2w.to("cuda"),
"K": K.to("cuda"),
"input_frame_mask": cond_frames_mask.to("cuda"),
}
if global_pbar is not None:
additional_sampler_inputs["global_pbar"] = global_pbar
shape = (math.prod(num_samples), C, H // F, W // F)
randn = torch.randn(shape).to(device)
samples_z = sampler(
lambda input, sigma, c: denoiser(
model,
input,
sigma,
c,
**additional_model_inputs,
),
randn,
scale=cfg,
cond=c,
uc=uc,
verbose=verbose,
**additional_sampler_inputs,
)
if samples_z is None:
return
samples = ae.decode(samples_z, decoding_t)
if return_latents:
return samples, samples_z
return samples
def decode_output(
samples,
T,
indices=None,
):
# decode model output into dict if it is not
if isinstance(samples, dict):
# model with postprocessor and outputs dict q``
for sample, value in samples.items():
if isinstance(value, torch.Tensor):
value = value.detach().cpu()
elif isinstance(value, np.ndarray):
value = torch.from_numpy(value)
else:
value = torch.tensor(value)
if indices is not None and value.shape[0] == T:
value = value[indices]
samples[sample] = value
else:
# model without postprocessor and outputs tensor (rgb)
samples = samples.detach().cpu()
if indices is not None and samples.shape[0] == T:
samples = samples[indices]
samples = {"samples-rgb/image": samples}
return samples
def select_frames(timestamps, min_num_frames=2, skip_frame=10, random_start=False):
"""
Select frames from a video sequence based on defined criteria.
Args:
timestamps: List of timestamps for the frames
min_num_frames: Minimum number of frames required
skip_frame: Number of frames to skip between selections
random_start: If True, start from a random frame
Returns:
tuple: (selected_frame_indices, selected_frame_timestamps) or (None, None) if criteria not met
"""
num_frames = len(timestamps)
if num_frames < min_num_frames:
print(f"[Worker PID={os.getpid()}] Episode has less than {min_num_frames} frames")
return None, None
# Decide on start/end frames
if num_frames < 2:
print(f"[Worker PID={os.getpid()}] Episode has less than 2 frames")
return None, None
elif num_frames < skip_frame:
cur_skip_frame = num_frames - 1
else:
cur_skip_frame = skip_frame
if random_start:
start_frame = np.random.randint(0, skip_frame)
else:
start_frame = 0
# Gather frame indices
selected_frame_indices = list(range(start_frame, num_frames, cur_skip_frame))
selected_frame_timestamps = [timestamps[i] for i in selected_frame_indices]
return selected_frame_indices, selected_frame_timestamps
def tensor2im(input_image, imtype=np.uint8):
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor): # get the data from a variable
image_tensor = input_image.data
else:
return input_image
image_numpy = image_tensor[0].clamp(0.0, 1.0).cpu().float().numpy() # convert it into a numpy array
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 # post-processing: tranpose and scaling
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype)
class LatentStorer:
def __init__(self):
self.latent = None
def __call__(self, i, t, latent):
self.latent = latent
def sobel_filter(disp, mode="sobel", beta=10.0):
sobel_grad = kornia.filters.spatial_gradient(disp, mode=mode, normalized=False)
sobel_mag = torch.sqrt(sobel_grad[:, :, 0, Ellipsis] ** 2 + sobel_grad[:, :, 1, Ellipsis] ** 2)
alpha = torch.exp(-1.0 * beta * sobel_mag).detach()
return alpha
def apply_colormap(image, cmap="viridis"):
colormap = cm.get_cmap(cmap)
colormap = torch.tensor(colormap.colors).to(image.device)
image_long = (image * 255).long()
image_long_min = torch.min(image_long)
image_long_max = torch.max(image_long)
assert image_long_min >= 0, f"the min value is {image_long_min}"
assert image_long_max <= 255, f"the max value is {image_long_max}"
return colormap[image_long[..., 0]]
def apply_depth_colormap(
depth,
near_plane=None,
far_plane=None,
cmap="viridis",
):
near_plane = near_plane or float(torch.min(depth))
far_plane = far_plane or float(torch.max(depth))
depth = (depth - near_plane) / (far_plane - near_plane + 1e-10)
depth = torch.clip(depth, 0, 1)
colored_image = apply_colormap(depth, cmap=cmap)
return colored_image
def save_video(video, path, fps=10):
video = video.permute(0, 2, 3, 1)
video_codec = "libx264"
video_options = {
"crf": "23", # Constant Rate Factor (lower value = higher quality, 18 is a good balance)
"preset": "slow",
}
write_video(str(path), video, fps=fps, video_codec=video_codec, options=video_options)
def visualize_camera_poses(camera_poses, axis_length=0.1):
"""
Visualizes a set of camera poses in 3D using Matplotlib.
Parameters
----------
camera_poses : np.ndarray
An array of shape (N, 4, 4) containing N camera poses.
Each pose is a 4x4 transformation matrix.
axis_length : float
Length of the camera axes to draw.
"""
if isinstance(camera_poses, torch.Tensor):
camera_poses = camera_poses.detach().cpu().numpy()
# Create a 3D figure
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Iterate over all camera poses
for i in range(camera_poses.shape[0]):
# Extract rotation (R) and translation (t)
R = camera_poses[i][:3, :3]
t = camera_poses[i][:3, 3]
# Plot the camera center
ax.scatter(t[0], t[1], t[2], c='k', marker='o', s=20)
# Define the end-points of each local axis
x_axis_end = t + R[:, 0] * axis_length
y_axis_end = t + R[:, 1] * axis_length
z_axis_end = t + R[:, 2] * axis_length
# Draw the axes as lines
ax.plot([t[0], x_axis_end[0]], [t[1], x_axis_end[1]],
[t[2], x_axis_end[2]], color='r') # X-axis (red)
ax.plot([t[0], y_axis_end[0]], [t[1], y_axis_end[1]],
[t[2], y_axis_end[2]], color='g') # Y-axis (green)
ax.plot([t[0], z_axis_end[0]], [t[1], z_axis_end[1]],
[t[2], z_axis_end[2]], color='b') # Z-axis (blue)
# Make axes have equal scale
set_axes_equal(ax)
ax.set_title("Camera Poses Visualization")
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
plt.show()
def set_axes_equal(ax):
"""
Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.
This is a workaround to Matplotlib's set_aspect('equal') which is not supported in 3D.
"""
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = x_limits[1] - x_limits[0]
y_range = y_limits[1] - y_limits[0]
z_range = z_limits[1] - z_limits[0]
max_range = max(x_range, y_range, z_range)
x_middle = np.mean(x_limits)
y_middle = np.mean(y_limits)
z_middle = np.mean(z_limits)
ax.set_xlim3d([x_middle - 0.5 * max_range, x_middle + 0.5 * max_range])
ax.set_ylim3d([y_middle - 0.5 * max_range, y_middle + 0.5 * max_range])
ax.set_zlim3d([z_middle - 0.5 * max_range, z_middle + 0.5 * max_range])
def tensor_to_pil(image):
if isinstance(image, torch.Tensor):
if image.dim() == 4:
image = image.squeeze(0)
image = image.permute(1, 2, 0).detach().cpu().numpy()
# Detect the range of the input tensor
if image.min() < -0.1: # If we have negative values, assume [-1, 1] range
image = (image + 1) / 2.0 # Convert from [-1, 1] to [0, 1]
# Otherwise, assume it's already in [0, 1] range
image = (image * 255)
image = np.clip(image, 0, 255)
image = image.astype(np.uint8)
return Image.fromarray(image)
def center_crop_pil_image(input_image, target_width=1024, target_height=576):
w, h = input_image.size
h_ratio = h / target_height
w_ratio = w / target_width
if h_ratio > w_ratio:
h = int(h / w_ratio)
if h < target_height:
h = target_height
input_image = input_image.resize((target_width, h), Image.Resampling.LANCZOS)
else:
w = int(w / h_ratio)
if w < target_width:
w = target_width
input_image = input_image.resize((w, target_height), Image.Resampling.LANCZOS)
return ImageOps.fit(input_image, (target_width, target_height), Image.BICUBIC)
def resize_pil_image(img, long_edge_size):
S = max(img.size)
if S > long_edge_size:
interp = PIL.Image.LANCZOS
elif S <= long_edge_size:
interp = PIL.Image.BICUBIC
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
return img.resize(new_size, interp)
def visualize_surfels(
surfels,
draw_normals=False,
normal_scale=20,
disk_resolution=16,
disk_alpha=0.5
):
"""
Visualize surfels as 2D disks oriented by their normals in 3D using matplotlib.
Args:
surfels (list of Surfel): Each Surfel has at least:
- position: (x, y, z)
- normal: (nx, ny, nz)
- radius: scalar
- color: (R, G, B) in [0..255] (optional)
draw_normals (bool): If True, draws the surfel normals as quiver arrows.
normal_scale (float): Scale factor for the normal arrows.
disk_resolution (int): Number of segments to approximate each disk.
disk_alpha (float): Alpha (transparency) for the filled disks.
"""
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Prepare arrays for optional quiver (if draw_normals=True)
positions = []
normals = []
# We'll accumulate 3D polygons in a list for Poly3DCollection
polygons = []
polygon_colors = []
for s in surfels:
# --- Extract surfel data ---
position = s.position
normal = s.normal
radius = s.radius
if isinstance(position, torch.Tensor):
x, y, z = position.detach().cpu().numpy()
nx, ny, nz = normal.detach().cpu().numpy()
radius = radius.detach().cpu().numpy()
else:
x, y, z = position
nx, ny, nz = normal
radius = radius
# Convert color from [0..255] to [0..1], or use default
if s.color is None:
color = (0.2, 0.6, 1.0) # Light blue
else:
r, g, b = s.color
color = (r/255.0, g/255.0, b/255.0)
# --- Build local coordinate axes for the disk ---
normal = np.array([nx, ny, nz], dtype=float)
norm_len = np.linalg.norm(normal)
# Skip degenerate normals to avoid nan
if norm_len < 1e-12:
continue
normal /= norm_len
# Pick an 'up' vector that is not too close to the normal
# so we can build a tangent plane
up = np.array([0, 0, 1], dtype=float)
if abs(normal.dot(up)) > 0.9:
up = np.array([0, 1, 0], dtype=float)
# xAxis = normal x up
xAxis = np.cross(normal, up)
xAxis /= np.linalg.norm(xAxis)
# yAxis = normal x xAxis
yAxis = np.cross(normal, xAxis)
yAxis /= np.linalg.norm(yAxis)
# --- Create a circle of 'disk_resolution' segments in local 2D coords ---
angles = np.linspace(0, 2*np.pi, disk_resolution, endpoint=False)
circle_points_3d = []
for theta in angles:
# local 2D circle: (r*cosθ, r*sinθ)
px = radius * np.cos(theta)
py = radius * np.sin(theta)
# transform to 3D world space: position + px*xAxis + py*yAxis
world_pt = np.array([x, y, z]) + px * xAxis + py * yAxis
circle_points_3d.append(world_pt)
# We have a list of [x, y, z]. For a filled polygon, Poly3DCollection
# wants them as a single Nx3 array.
circle_points_3d = np.array(circle_points_3d)
polygons.append(circle_points_3d)
polygon_colors.append(color)
# Collect positions and normals for quiver (if used)
positions.append([x, y, z])
normals.append(normal)
# --- Draw the disks as polygons ---
poly_collection = Poly3DCollection(
polygons,
facecolors=polygon_colors,
edgecolors='k', # black edge
linewidths=0.5,
alpha=disk_alpha
)
ax.add_collection3d(poly_collection)
# --- Optionally draw normal vectors (quiver) ---
if draw_normals and len(positions) > 0:
X = [p[0] for p in positions]
Y = [p[1] for p in positions]
Z = [p[2] for p in positions]
Nx = [n[0] for n in normals]
Ny = [n[1] for n in normals]
Nz = [n[2] for n in normals]
# Note: If your scene is large, you may want to increase `length`.
ax.quiver(
X, Y, Z,
Nx, Ny, Nz,
length=normal_scale,
color='red',
normalize=True
)
# --- Axis labels, aspect ratio, etc. ---
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
try:
ax.set_box_aspect((1, 1, 1))
except AttributeError:
pass # older MPL versions
plt.title("Surfels as Disks (Oriented by Normal)")
plt.show()
def visualize_pointcloud(
points,
colors=None,
title='Point Cloud',
point_size=1,
alpha=1.0
):
"""
Visualize a 3D point cloud using Matplotlib, with an option to provide
per-point RGB or RGBA colors, ensuring equal scaling for the x, y, and z axes.
Parameters
----------
points : np.ndarray or torch.Tensor
A numpy array (or Tensor) of shape [N, 3] where each row is a 3D point (x, y, z).
colors : None, str, or np.ndarray
- If None, a default single color ('blue') is used.
- If a string, that color will be used for all points.
- If a numpy array, it should have shape [N, 3] or [N, 4], where each row
corresponds to the color of the matching point in `points`.
Values should be in the range [0, 1] if using floats.
title : str, optional
The title of the plot. Default is 'Point Cloud'.
point_size : float, optional
The size of the points in the scatter plot. Default is 1.
alpha : float, optional
The overall alpha (transparency) value for the points. Default is 1.0.
Examples
--------
>>> import numpy as np
>>> # Generate random points
>>> pts = np.random.rand(1000, 3)
>>> # Generate random colors in [0,1]
>>> cols = np.random.rand(1000, 3)
>>> visualize_pointcloud(pts, colors=cols, title="Random Point Cloud with Colors")
"""
# Convert Torch tensors to NumPy arrays if needed
if isinstance(points, torch.Tensor):
points = points.detach().cpu().numpy()
if isinstance(colors, torch.Tensor):
colors = colors.detach().cpu().numpy()
# Flatten points if they are in a higher-dimensional array
if len(points.shape) > 2:
points = points.reshape(-1, 3)
if colors is not None and isinstance(colors, np.ndarray) and len(colors.shape) > 2:
colors = colors.reshape(-1, colors.shape[-1])
# Validate shape of points
if points.shape[1] != 3:
raise ValueError("`points` array must have shape [N, 3].")
# Validate or set colors
if colors is None:
colors = 'blue'
elif isinstance(colors, np.ndarray):
colors = np.asarray(colors)
if colors.shape[0] != points.shape[0]:
raise ValueError(
"Colors array length must match the number of points."
)
if colors.shape[1] not in [3, 4]:
raise ValueError(
"Colors array must have shape [N, 3] or [N, 4]."
)
# Extract coordinates
x = points[:, 0]
y = points[:, 1]
z = points[:, 2]
# Create a 3D figure
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
# Scatter plot with specified or per-point colors
ax.scatter(x, y, z, c=colors, s=point_size, alpha=alpha)
# Set labels and title
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title(title)
# Ensure all axes have the same scale
max_range = np.array([x.max() - x.min(),
y.max() - y.min(),
z.max() - z.min()]).max() / 2.0
mid_x = (x.max() + x.min()) * 0.5
mid_y = (y.max() + y.min()) * 0.5
mid_z = (z.max() + z.min()) * 0.5
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)
# Adjust viewing angle for better visibility
ax.view_init(elev=20., azim=30)
plt.tight_layout()
plt.show()
def visualize_depth(depth_image,
file_name="rendered_depth.png",
visualization_dir="visualization",
size=(512, 288)):
"""
Visualize a depth map as a grayscale image.
Parameters
----------
depth_image : np.ndarray
A 2D array of depth values.
visualization_dir : str
The directory to save the visualization image.
Returns
-------
PIL.Image
The visualization image.
"""
# Normalize the depth values for visualization
depth_min = depth_image.min()
depth_max = depth_image.max()
print(f"Depth min: {depth_min}, max: {depth_max}")
depth_image = np.clip(depth_image, 0, depth_max)
depth_vis = (depth_image - depth_min) / (depth_max - depth_min)
depth_vis = (depth_vis * 255).astype(np.uint8)
# Convert the depth image to a PIL image
depth_vis_img = Image.fromarray(depth_vis, mode='L')
depth_vis_img = depth_vis_img.resize(size, Image.NEAREST)
# Save the visualization image
depth_vis_img.save(os.path.join(visualization_dir, file_name))
return depth_vis_img
class Surfel:
def __init__(self, position, normal, radius=1.0, color=None):
"""
position: (x, y, z)
normal: (nx, ny, nz)
radius: scalar
color: (r, g, b) or None
"""
self.position = position
self.normal = normal
self.radius = radius
self.color = color
def __repr__(self):
return (f"Surfel(position={self.position}, "
f"normal={self.normal}, radius={self.radius}, "
f"color={self.color})")
class Octree:
def __init__(self, points, indices=None, bbox=None, max_points=10):
self.points = points
if indices is None:
indices = np.arange(points.shape[0])
self.indices = indices
if bbox is None:
min_bound = points.min(axis=0)
max_bound = points.max(axis=0)
center = (min_bound + max_bound) / 2
half_size = np.max(max_bound - min_bound) / 2
bbox = (center, half_size)
self.center, self.half_size = bbox
self.children = [] # 存储子节点
self.max_points = max_points
if len(self.indices) > self.max_points:
self.subdivide()
def subdivide(self):
cx, cy, cz = self.center
hs = self.half_size / 2
offsets = np.array([[dx, dy, dz] for dx in (-hs, hs)
for dy in (-hs, hs)
for dz in (-hs, hs)])
for offset in offsets:
child_center = self.center + offset
child_indices = []
for idx in self.indices:
p = self.points[idx]
if np.all(np.abs(p - child_center) <= hs):
child_indices.append(idx)
child_indices = np.array(child_indices)
if len(child_indices) > 0:
child = Octree(self.points, indices=child_indices, bbox=(child_center, hs), max_points=self.max_points)
self.children.append(child)
self.indices = None
def sphere_intersects_node(self, center, r):
diff = np.abs(center - self.center)
max_diff = diff - self.half_size
max_diff = np.maximum(max_diff, 0)
dist_sq = np.sum(max_diff**2)
return dist_sq <= r*r
def query_ball_point(self, point, r):
results = []
if not self.sphere_intersects_node(point, r):
return results
if len(self.children) == 0:
if self.indices is not None:
for idx in self.indices:
if np.linalg.norm(self.points[idx] - point) <= r:
results.append(idx)
return results
else:
for child in self.children:
results.extend(child.query_ball_point(point, r))
return results