vmem / modeling /pipeline.py
liguang0115's picture
Refactor inference configuration and pipeline logic; removed unused parameters and improved frame selection process. Updated inference settings in inference.yaml and streamlined surfel model initialization in pipeline.py.
390338e
raw
history blame
54.7 kB
import os
from typing import List, Union
from copy import deepcopy
import math
import PIL
import numpy as np
from einops import repeat
import torch
import torch.nn.functional as F
import torchvision.transforms as tvf
from diffusers.utils import export_to_gif
import sys
sys.path.append("./extern/CUT3R")
from extern.CUT3R.surfel_inference import run_inference_from_pil
from extern.CUT3R.add_ckpt_path import add_path_to_dust3r
from extern.CUT3R.src.dust3r.model import ARCroco3DStereo
from modeling import VMemWrapper, VMemModel, VMemModelParams
from modeling.modules.autoencoder import AutoEncoder
from modeling.sampling import DDPMDiscretization, DiscreteDenoiser, create_samplers
from modeling.modules.conditioner import CLIPConditioner
from utils import (encode_vae_image,
encode_image,
visualize_depth,
visualize_surfels,
tensor_to_pil,
Octree,
Surfel,
get_plucker_coordinates,
do_sample,
average_camera_pose)
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
class VMemPipeline:
def __init__(self, config, device="cpu", dtype=torch.float32):
self.config = config
model_path = self.config.model.get("model_path", None)
self.model = VMemModel(VMemModelParams()).to(device, dtype)
# load from huggingface
from huggingface_hub import hf_hub_download
state_dict = torch.load(hf_hub_download(repo_id=model_path, filename="vmem_weights.pth"), map_location='cpu')
state_dict = {k.replace("module.", "") if "module." in k else k: v for k, v in state_dict.items()}
self.model.load_state_dict(state_dict, strict=True)
self.model_wrapper = VMemWrapper(self.model)
self.model_wrapper.eval()
self.vae = AutoEncoder(chunk_size=1).to(device, dtype)
self.vae.eval()
self.image_encoder = CLIPConditioner().to(device, dtype)
self.image_encoder.eval()
self.discretization = DDPMDiscretization()
self.denoiser = DiscreteDenoiser(discretization=self.discretization, num_idx=1000, device=device)
self.sampler = create_samplers(guider_types=config.model.guider_types,
discretization=self.discretization,
num_frames=config.model.num_frames,
num_steps=config.model.inference_num_steps,
cfg_min=config.model.cfg_min,
device=device)
self.dtype = dtype
self.device = device
surfel_model_path = hf_hub_download(repo_id=self.config.surfel.model_path, filename="cut3r_512_dpt_4_64.pth")
print(f"Loading model from {surfel_model_path}...")
add_path_to_dust3r(surfel_model_path)
self.surfel_model = ARCroco3DStereo.from_pretrained(surfel_model_path).to(device)
self.surfel_model.eval()
# Import CUT3R scene alignment module
from extern.CUT3R.cloud_opt.dust3r_opt import global_aligner, GlobalAlignerMode
self.GlobalAlignerMode = GlobalAlignerMode
self.global_aligner = global_aligner
self.use_non_maximum_suppression = self.config.model.use_non_maximum_suppression
self.context_num_frames = self.config.model.context_num_frames
self.target_num_frames = self.config.model.target_num_frames
self.original_height = self.config.model.original_height
self.original_width = self.config.model.original_width
self.height = self.config.model.height
self.width = self.config.model.width
self.w_ratio = self.width / self.original_width
self.h_ratio = self.height / self.original_height
self.camera_scale = self.config.model.camera_scale
self.latents = []
self.encoder_embeddings = []
self.poses = []
self.Ks = []
self.surfel_Ks = []
self.surfels = []
self.surfel_depths = []
self.surfel_to_timestep = {}
self.pil_frames = []
self.visualize_dir = self.config.model.samples_dir
if not os.path.exists(self.visualize_dir):
os.makedirs(self.visualize_dir)
self.global_step = 0
def reset(self):
self.rgb_vae_latents = []
self.rgb_encoder_embeddings = []
self.poses = []
self.focal_lengths = []
self.surfels = []
self.surfel_Ks = []
self.surfel_depths = []
self.Ks = []
self.surfel_to_timestep = {}
self.all_pil_frames = []
self.global_step = 0
def initialize(self, image, c2w, K):
"""
Initialize the pipeline with a single image and camera parameters.
This method sets up internal state without generating additional frames.
Args:
image: Tensor of input image [1, C, H, W]
c2w: Camera-to-world matrix (4x4)
K: Camera intrinsic matrix
Returns:
PIL image of the initial frame
"""
# Reset internal state
self.reset()
# Process the image
if isinstance(image, torch.Tensor):
image_tensor = image
else:
# Convert to tensor if it's not already (fallback)
image_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 127.5 - 1.0
image_tensor = image_tensor.unsqueeze(0).to(self.device, self.dtype)
# Encode the image to VAE latents
self.latents = [encode_vae_image(image_tensor, self.vae, self.device, self.dtype).detach().cpu().numpy()[0]]
# Encode the image embeddings for the image_encoder
self.encoder_embeddings = [encode_image(image_tensor, self.image_encoder, self.device, self.dtype).detach().cpu().numpy()[0]]
# Store camera pose and intrinsics
self.c2ws = [c2w]
self.Ks = [K]
# Convert to PIL and store
pil_frame = tensor_to_pil(image_tensor)
self.pil_frames = [pil_frame]
return pil_frame
def geodesic_distance(self,
camera_pose1,
camera_pose2,
weight_translation=1,):
"""
Computes the geodesic distance between two camera poses in SE(3).
Parameters:
extrinsic1 (torch.Tensor): 4x4 extrinsic matrix of the first pose.
extrinsic2 (torch.Tensor): 4x4 extrinsic matrix of the second pose.
Returns:
float: Geodesic distance between the two poses.
"""
# Extract the rotation and translation components
R1 = camera_pose1[:3, :3]
t1 = camera_pose1[:3, 3]
R2 = camera_pose2[:3, :3]
t2 = camera_pose2[:3, 3]
# Compute the translation distance (Euclidean distance)
translation_distance = torch.norm(t1 - t2)
# Compute the relative rotation matrix
R_relative = torch.matmul(R1.T, R2)
# Compute the angular distance from the trace of the relative rotation matrix
trace_value = torch.trace(R_relative)
# Clamp the trace value to avoid numerical issues
trace_value = torch.clamp(trace_value, -1.0, 3.0)
angular_distance = torch.acos((trace_value - 1) / 2)
# Combine the two distances
geodesic_dist = translation_distance*weight_translation + angular_distance
return geodesic_dist
def render_surfels_to_image(
self,
surfels,
poses,
focal_lengths,
principal_points,
image_width,
image_height,
disk_resolution=16
):
"""
Renders oriented surfels into a 2D RGB image with a simple z-buffer.
Each surfel is treated as a 2D disk in 3D, oriented by its normal.
The disk is approximated by a polygon of 'disk_resolution' segments.
Args:
surfels (list): List of Surfel objects, each having:
- position: (x, y, z) in world coords
- normal: (nx, ny, nz)
- radius: float, radius in world units
poses (torch.Tensor): Tensor of poses, shape [4, 4]
focal_lengths (torch.Tensor): Tensor of focal lengths, shape [2]
principal_points (torch.Tensor): Tensor of principal points, shape [2]
image_width, image_height (int): output image size
disk_resolution (int): number of segments for approximating each disk
Returns:
Dictionary containing:
- depth: depth map
- surfel_index_map: map of surfel indices
- cos_value_map: map of cosine values between view and normal directions
"""
if isinstance(focal_lengths, torch.Tensor):
focal_lengths = focal_lengths.detach().cpu().numpy()
if isinstance(principal_points, torch.Tensor):
principal_points = principal_points.detach().cpu().numpy()
if isinstance(poses, torch.Tensor):
poses = poses.detach().cpu().numpy()
# Initialize buffers
surfel_index_map = np.full((image_height, image_width), -1, dtype=np.int32)
z_buffer = np.full((image_height, image_width), np.inf, dtype=np.float32)
cos_buffer = np.zeros((image_height, image_width), dtype=np.float32)
# Unpack camera parameters
fx, fy, cx, cy = focal_lengths[0], focal_lengths[1], principal_points[0], principal_points[1]
R = poses[0:3, 0:3]
t = poses[0:3, 3]
# Compute view frustum planes in world space
# We'll use 6 planes: near, far, left, right, top, bottom
near_z = 0.1 # Near plane distance
far_z = 1000.0 # Far plane distance
# Convert all surfel positions to camera space at once for efficient culling
positions = np.array([s.position for s in surfels])
positions_h = np.concatenate([positions, np.ones((len(positions), 1))], axis=1)
# Compute camera matrix
extrinsics = np.zeros((4, 4))
extrinsics[0:3, 0:3] = np.linalg.inv(R)
extrinsics[0:3, 3] = -np.linalg.inv(R) @ t
extrinsics[3, 3] = 1
# Transform all points to camera space at once
cam_points = (extrinsics @ positions_h.T).T
cam_points = cam_points[:, :3] / cam_points[:, 3:]
# Compute view frustum culling mask
in_front = cam_points[:, 2] > near_z
behind_far = cam_points[:, 2] < far_z
# Project points to get screen coordinates
screen_x = fx * (cam_points[:, 0] / cam_points[:, 2]) + cx
screen_y = fy * (cam_points[:, 1] / cam_points[:, 2]) + cy
# Check which points are within screen bounds (with some margin for surfel radius)
margin = 50 # Margin in pixels to account for surfel radius
in_screen_x = (screen_x >= -margin) & (screen_x < image_width + margin)
in_screen_y = (screen_y >= -margin) & (screen_y < image_height + margin)
# Combine all culling masks
visible_mask = in_front & behind_far & in_screen_x & in_screen_y
visible_indices = np.where(visible_mask)[0]
def point_in_polygon_2d(px, py, polygon):
"""Fast point-in-polygon test using ray casting"""
inside = False
n = len(polygon)
j = n - 1
for i in range(n):
if (((polygon[i][1] > py) != (polygon[j][1] > py)) and
(px < (polygon[j][0] - polygon[i][0]) * (py - polygon[i][1]) /
(polygon[j][1] - polygon[i][1] + 1e-15) + polygon[i][0])):
inside = not inside
j = i
return inside
# Pre-compute angle samples for circle approximation
angles = np.linspace(0, 2*math.pi, disk_resolution, endpoint=False)
cos_angles = np.cos(angles)
sin_angles = np.sin(angles)
# Process only visible surfels
for idx in visible_indices:
surfel = surfels[idx]
px, py, pz = surfel.position
nx, ny, nz = surfel.normal
radius = surfel.radius
# Skip degenerate normals
normal = np.array([nx, ny, nz], dtype=float)
norm_len = np.linalg.norm(normal)
if norm_len < 1e-12:
continue
normal /= norm_len
# Compute view direction and cosine value
point_direction = (px, py, pz) - t
point_direction = point_direction / np.linalg.norm(point_direction)
cos_value = np.dot(point_direction, normal)
# Skip backfaces
if cos_value < 0:
continue
# Build local coordinate frame
up = np.array([0, 0, 1], dtype=float)
if abs(np.dot(normal, up)) > 0.9:
up = np.array([0, 1, 0], dtype=float)
xAxis = np.cross(normal, up)
xAxis /= np.linalg.norm(xAxis)
yAxis = np.cross(normal, xAxis)
yAxis /= np.linalg.norm(yAxis)
# Generate circle points efficiently
offsets = radius * (cos_angles[:, None] * xAxis + sin_angles[:, None] * yAxis)
circle_points = positions[idx] + offsets
# Project all circle points at once
circle_points_h = np.concatenate([circle_points, np.ones((len(circle_points), 1))], axis=1)
cam_circle = (extrinsics @ circle_points_h.T).T
depths = cam_circle[:, 2]
valid_mask = depths > 0
if not np.any(valid_mask):
continue
screen_points = np.zeros((len(circle_points), 2))
screen_points[:, 0] = fx * (cam_circle[:, 0] / depths) + cx
screen_points[:, 1] = fy * (cam_circle[:, 1] / depths) + cy
# Get bounding box
valid_points = screen_points[valid_mask]
if len(valid_points) < 3:
continue
min_x = max(0, int(np.floor(np.min(valid_points[:, 0]))))
max_x = min(image_width - 1, int(np.ceil(np.max(valid_points[:, 0]))))
min_y = max(0, int(np.floor(np.min(valid_points[:, 1]))))
max_y = min(image_height - 1, int(np.ceil(np.max(valid_points[:, 1]))))
# Average depth for z-buffer
avg_depth = float(np.mean(depths[valid_mask]))
# Rasterize polygon
for py_ in range(min_y, max_y + 1):
for px_ in range(min_x, max_x + 1):
if point_in_polygon_2d(px_, py_, valid_points):
if avg_depth < z_buffer[py_, px_]:
z_buffer[py_, px_] = avg_depth
surfel_index_map[py_, px_] = idx
cos_buffer[py_, px_] = cos_value
# Clean up depth buffer
depth = z_buffer
depth[depth == np.inf] = 0
return {
"depth": depth,
"surfel_index_map": surfel_index_map,
"cos_value_map": cos_buffer
}
def get_frame_distribution(self,
n,
ratios):
"""
Given:
- an integer n,
- a list of k ratios whose sum is 1 (k <= n),
return a list of k integers [x1, x2, ..., xk],
such that each xi >= 1, sum(xi) = n, and
the xi are as proportional to ratios as possible.
"""
k = len(ratios)
if k > n:
# set the top n ratios to 1
result = [0] * k
sort_indices = np.argsort(ratios)[::-1]
for sort_index in sort_indices[:n]:
result[sort_index] = 1
return result
# 1. Reserve 1 for each ratio
result = [1] * k
# 2. Distribute the leftover among the k ratios proportionally
leftover = n - k
if leftover == 0:
# If n == k, each ratio just gets 1
return result
# Compute products for leftover distribution
products = [r * leftover for r in ratios]
floored = [int(p // 1) for p in products] # floor of each product
sum_floors = sum(floored)
leftover2 = leftover - sum_floors # how many units still to distribute
# Add the floored part to the result
for i in range(k):
result[i] += floored[i]
# Sort by the fractional remainder, descending
remainders = [(p - f, i) for i, (p, f) in enumerate(zip(products, floored))]
remainders.sort(key=lambda x: x[0], reverse=True)
# Distribute the leftover2 among the largest fractional remainders
for j in range(leftover2):
_, idx = remainders[j]
result[idx] = 1
return result
def process_retrieved_spatial_information(self, retrieved_spatial_information):
timestep_count = {}
surfel_index_map = retrieved_spatial_information["surfel_index_map"]
cos_value_map = retrieved_spatial_information["cos_value_map"]
depth_map = retrieved_spatial_information["depth"]
filtered_cos_value = cos_value_map[surfel_index_map >= 0]
filtered_surfel_index = surfel_index_map[surfel_index_map >= 0]
filtered_depth = depth_map[surfel_index_map >= 0]
assert len(filtered_cos_value) == len(filtered_surfel_index), "filtered_cos_value and filtered_surfel_index should have the same length"
for j in range(len(filtered_surfel_index)):
cos_value = filtered_cos_value[j]
depth_value = filtered_depth[j]
if cos_value < 0:
continue
surfel_index = filtered_surfel_index[j]
timesteps = self.surfel_to_timestep[surfel_index]
for timestep in timesteps:
if timestep not in timestep_count:
timestep_count[timestep] = cos_value/(1+depth_value)
timestep_count[timestep] += cos_value/(1+depth_value)
timestep_count_values = np.array(list(timestep_count.values()))
timestep_count_ratios = timestep_count_values / np.sum(timestep_count_values)
timestep_weights = {k: timestep_count_ratios[i] for i, k in enumerate(timestep_count)}
num_retrieved_frames = min(self.config.model.context_num_frames+10, len(timestep_weights))
frame_count = self.get_frame_distribution(num_retrieved_frames, list(timestep_weights.values())) # hard code
frame_count = {k: int(v) for k, v in zip(timestep_count.keys(), frame_count)}
# sort timestep_weights and frame_distribution by timestep without
timestep_weights = sorted(timestep_weights.items(), key=lambda x: x[0])
frame_count = sorted(frame_count.items(), key=lambda x: x[0])
return timestep_weights, frame_count
def get_context_info(self, target_c2ws, use_non_maximum_suppression=None):
"""Get context information for novel view synthesis.
Args:
target_c2ws: Target camera-to-world matrices
Ks: Camera intrinsic matrices
current_timestep: Current timestep (used in temporal mode)
Returns:
Dictionary containing context information for the target view
"""
# Function to prepare context tensors from indices
def prepare_context_data(indices):
c2ws = [self.c2ws[i] for i in indices]
latents = [torch.from_numpy(self.latents[i]).to(self.device, self.dtype) for i in indices]
embeddings = [torch.from_numpy(self.encoder_embeddings[i]).to(self.device, self.dtype) for i in indices]
intrinsics = [self.Ks[i] for i in indices]
return c2ws, latents, embeddings, intrinsics, indices
if len(self.pil_frames) == 1:
context_time_indices = [0]
else:
# get the average camera pose
average_c2w = average_camera_pose(target_c2ws[-self.config.model.context_num_frames//4:])
transformed_average_c2w = self.get_transformed_c2ws(average_c2w)
target_K = np.mean(self.surfel_Ks, axis=0)
# Select frames using surfel-based relevance
retrieved_info = self.render_surfels_to_image(
self.surfels,
transformed_average_c2w,
[target_K*0.65] * 2,
principal_points=(int(self.config.surfel.width/2), int(self.config.surfel.height/2)),
image_width=int(self.config.surfel.width),
image_height=int(self.config.surfel.height)
)
_, frame_count = self.process_retrieved_spatial_information(retrieved_info)
if self.config.inference.visualize:
visualize_depth(retrieved_info["depth"],
visualization_dir=self.visualize_dir,
file_name=f"retrieved_depth_surfels.png",
size=(self.width, self.height))
# Build candidate frames based on relevance count
candidates = []
for frame, count in frame_count:
candidates.extend([frame] * count)
indices_to_frame = {
i: frame for i, frame in enumerate(candidates)
}
# Sort candidates by distance to target view
distances = [self.geodesic_distance(torch.from_numpy(average_c2w).to(self.device, self.dtype),
torch.from_numpy(self.c2ws[frame]).to(self.device, self.dtype),
weight_translation=self.config.model.translation_distance_weight).item()
for frame in candidates]
sorted_indices = torch.argsort(torch.tensor(distances))
sorted_frames = [indices_to_frame[int(i.item())] for i in sorted_indices]
max_frames = min(self.config.model.context_num_frames, len(candidates), len(self.latents))
is_second_step = len(self.pil_frames) == 5
# Adaptively determine initial threshold based on camera pose distribution
if use_non_maximum_suppression is None:
use_non_maximum_suppression = self.use_non_maximum_suppression
if use_non_maximum_suppression:
if is_second_step:
# Calculate pairwise distances between existing frames
pairwise_distances = []
for i in range(len(self.c2ws)):
for j in range(i+1, len(self.c2ws)):
sim = self.geodesic_distance(
torch.from_numpy(np.array(self.c2ws[i])).to(self.device, self.dtype),
torch.from_numpy(np.array(self.c2ws[j])).to(self.device, self.dtype),
weight_translation=self.config.model.translation_distance_weight
)
pairwise_distances.append(sim.item())
if pairwise_distances:
# Sort distances and take percentile as threshold
pairwise_distances.sort()
percentile_idx = int(len(pairwise_distances) * 0.5) # 25th percentile
self.initial_threshold = pairwise_distances[percentile_idx]
else:
self.initial_threshold = 1
else:
self.initial_threshold = 1e8
selected_indices = []
current_threshold = self.initial_threshold
# Always start with the closest pose
selected_indices.append(sorted_frames[0])
if not use_non_maximum_suppression:
selected_indices.append(len(self.c2ws) - 1)
# Try with increasingly relaxed thresholds until we get enough frames
while len(selected_indices) < max_frames and current_threshold >= 1e-5 and use_non_maximum_suppression:
# Try to add each subsequent pose in order of distance
for idx in sorted_frames[1:]:
if len(selected_indices) >= max_frames:
break
# Check if this candidate is sufficiently different from all selected frames
is_too_similar = False
for selected_idx in selected_indices:
similarity = self.geodesic_distance(
torch.from_numpy(np.array(self.c2ws[idx])).to(self.device, self.dtype),
torch.from_numpy(np.array(self.c2ws[selected_idx])).to(self.device, self.dtype),
weight_translation=self.config.model.translation_distance_weight
)
if similarity < current_threshold:
is_too_similar = True
break
# Add to selected frames if not too similar to any existing selection
if not is_too_similar:
selected_indices.append(idx)
# If we still don't have enough frames, relax the threshold and try again
if len(selected_indices) < max_frames:
current_threshold /= 1.2
else:
break
# If we still don't have enough frames, just take the top frames by distance
if len(selected_indices) < max_frames:
available_indices = []
for idx in sorted_frames:
if idx not in selected_indices:
available_indices.append(idx)
selected_indices.extend(available_indices[:max_frames-len(selected_indices)])
# Convert to tensor and maintain original order (don't reverse)
context_time_indices = torch.from_numpy(np.array(selected_indices))
context_data = prepare_context_data(context_time_indices)
(context_c2ws, context_latents, context_encoder_embeddings, context_Ks, context_time_indices) = context_data
print(f"context_time_indices: {context_time_indices}")
return {
"context_c2ws": torch.from_numpy(np.array(context_c2ws)).to(self.device, self.dtype),
"context_latents": torch.stack(context_latents).to(self.device, self.dtype),
"context_encoder_embeddings": torch.stack(context_encoder_embeddings).to(self.device, self.dtype),
"context_Ks": torch.from_numpy(np.array(context_Ks)).to(self.device, self.dtype),
"context_time_indices": context_time_indices,
}
def merge_surfels(
self,
new_surfels: list,
current_timestep: str,
existing_surfels: list,
existing_surfel_to_timestep: dict,
position_threshold: Union[float, None] = None, # Now optional
normal_threshold: float = 0.7,
max_points_per_node: int = 10
):
assert len(existing_surfels) == len(existing_surfel_to_timestep), (
"existing_surfels and existing_surfel_to_timestep should have the same length"
)
# Automatically calculate position threshold if not provided
if position_threshold is None:
# Calculate average radius from both new and existing surfels
all_radii = np.array([s.radius for s in existing_surfels + new_surfels])
if len(all_radii) > 0:
# Use mean radius as base threshold with a scaling factor
mean_radius = np.mean(all_radii)
std_radius = np.std(all_radii)
# Position threshold = mean + 0.5 * std to account for variance
position_threshold = mean_radius + 0.5 * std_radius
else:
# Fallback to default if no surfels available
position_threshold = 0.025
positions = np.array([s.position for s in existing_surfels]) # Shape: (N, 3)
normals = np.array([s.normal for s in existing_surfels]) # Shape: (N, 3)
if len(positions) > 0:
octree = Octree(positions, max_points=max_points_per_node)
else:
octree = None
filtered_surfels = []
merge_count = 0
for new_surfel in new_surfels:
is_merged = False
if octree is not None:
neighbor_indices = octree.query_ball_point(new_surfel.position, position_threshold)
else:
neighbor_indices = []
for idx in neighbor_indices:
if np.dot(normals[idx], new_surfel.normal) > normal_threshold:
if current_timestep not in existing_surfel_to_timestep[idx]:
existing_surfel_to_timestep[idx].append(current_timestep)
is_merged = True
merge_count += 1
break
if not is_merged:
filtered_surfels.append(new_surfel)
print(f"merge_count: {merge_count}")
return filtered_surfels, existing_surfel_to_timestep
def pointmap_to_surfels(self,
pointmap: torch.Tensor,
focal_lengths: torch.Tensor,
depths: torch.Tensor,
confs: torch.Tensor,
poses: torch.Tensor, # shape: (4, 4)
radius_scale: float = 0.5,
estimate_normals: bool = True):
"""
Vectorized version of pointmap to surfels conversion.
All operations are performed on the specified device (self.device) until final numpy conversion.
"""
if isinstance(poses, np.ndarray):
poses = torch.from_numpy(poses).to(self.device)
if isinstance(focal_lengths, np.ndarray):
focal_lengths = torch.from_numpy(focal_lengths).to(self.device)
if isinstance(depths, np.ndarray):
depths = torch.from_numpy(depths).to(self.device)
if isinstance(confs, np.ndarray):
confs = torch.from_numpy(confs).to(self.device)
# Ensure all inputs are on the correct device
pointmap = pointmap.to(self.device)
focal_lengths = focal_lengths.to(self.device)
depths = depths.to(self.device)
confs = confs.to(self.device)
poses = poses.to(self.device)
if len(focal_lengths) == 2:
focal_lengths = torch.mean(focal_lengths, dim=0)
# 1) Estimate normals
if estimate_normals:
normal_map = self.estimate_normal_from_pointmap(pointmap)
else:
normal_map = torch.zeros_like(pointmap)
# Create mask for valid points
# depth threshold is the 95 percentile of the depth map
depth_threshold = torch.quantile(depths, 0.999)
valid_mask = (depths <= depth_threshold) & (confs >= self.config.surfel.conf_thresh)
# Get positions, normals and depths for valid points
positions = pointmap[valid_mask] # [N, 3]
normals = normal_map[valid_mask] # [N, 3]
valid_depths = depths[valid_mask] # [N]
# Calculate view directions for all valid points at once
camera_pos = poses[0:3, 3]
view_directions = positions - camera_pos.unsqueeze(0) # [N, 3]
view_directions = F.normalize(view_directions, dim=1) # [N, 3]
# Calculate dot products between view directions and normals
dot_products = torch.sum(view_directions * normals, dim=1) # [N]
# Flip normals where needed
flip_mask = dot_products < 0
normals[flip_mask] = -normals[flip_mask]
# Recalculate dot products with potentially flipped normals
dot_products = torch.abs(torch.sum(view_directions * normals, dim=1)) # [N]
# Calculate adjustment values and radii
adjustment_values = 0.2 + 0.8 * dot_products # [N]
radii = (radius_scale * valid_depths / focal_lengths / adjustment_values) # [N]
# Convert to numpy only at the end
positions = positions.detach().cpu().numpy()
normals = normals.detach().cpu().numpy()
radii = radii.detach().cpu().numpy()
# Create surfels list using list comprehension
surfels = [Surfel(pos, norm, rad) for pos, norm, rad in zip(positions, normals, radii)]
return surfels
def estimate_normal_from_pointmap(self,pointmap: torch.Tensor) -> torch.Tensor:
h, w = pointmap.shape[:2]
device = pointmap.device # Keep the device (CPU/GPU) consistent
dtype = pointmap.dtype
# Initialize the normal map
normal_map = torch.zeros((h, w, 3), device=device, dtype=dtype)
for y in range(h):
for x in range(w):
# Check if neighbors are within bounds
if x+1 >= w or y+1 >= h:
continue
p_center = pointmap[y, x]
p_right = pointmap[y, x+1]
p_down = pointmap[y+1, x]
# Compute vectors
v1 = p_right - p_center
v2 = p_down - p_center
v1 = v1 / torch.linalg.norm(v1)
v2 = v2 / torch.linalg.norm(v2)
# Cross product in camera coordinates
n_c = torch.cross(v1, v2)
# n_c *= 1e10
# Compute norm of the normal vector
norm_len = torch.linalg.norm(n_c)
if norm_len < 1e-8:
continue
# Normalize and store
normal_map[y, x] = n_c / norm_len
return normal_map
def get_transformed_c2ws(self, c2ws=None):
if c2ws is None:
c2ws = self.c2ws
c2ws_transformed = deepcopy(np.array(c2ws))
c2ws_transformed[..., :, [1, 2]] *= -1
return c2ws_transformed
def construct_and_store_scene(self,
input_images: List[PIL.Image.Image],
time_indices,
niter = 1000,
lr = 0.01,
device = 'cuda',
):
"""
Constructs a scene from input images and stores the resulting surfels.
Args:
input_images: List of PIL images to process
time_indices: The time indices for each image
niter: Number of iterations for optimization
lr: Learning rate for optimization
device: Device to run inference on
only_last_frame: Whether to only process the last frame
"""
# Flip Y and Z components of camera poses to match dataset convention
c2ws_transformed = self.get_transformed_c2ws()
scene = run_inference_from_pil(
input_images,
self.surfel_model,
poses=c2ws_transformed,
depths=torch.from_numpy(np.array(self.surfel_depths)) if len(self.surfel_depths) > 0 else None,
lr = lr,
niter = niter,
visualize=self.config.inference.visualize_surfel,
device=device,
)
# Extract outputs
pointcloud = torch.cat(scene['point_clouds'], dim=0)
confs = torch.cat(scene['confidences'], dim=0)
depths = torch.cat(scene['depths'], dim=0)
focal_lengths = scene['camera_info']['focal']
self.surfel_Ks.extend([focal_lengths[i] for i in range(len(focal_lengths))])
self.surfel_depths = [depths[i].detach().cpu().numpy() for i in range(len(depths))]
# Resize pointcloud
pointcloud = pointcloud.permute(0, 3, 1, 2)
pointcloud = F.interpolate(
pointcloud,
scale_factor=self.config.surfel.shrink_factor,
mode='bilinear'
)
pointcloud = pointcloud.permute(0, 2, 3, 1)
depths = depths.unsqueeze(1)
depths = F.interpolate(
depths,
scale_factor=self.config.surfel.shrink_factor,
mode='bilinear'
)
depths = depths.squeeze(1)
confs = confs.unsqueeze(1)
confs = F.interpolate(
confs,
scale_factor=self.config.surfel.shrink_factor,
mode='bilinear'
)
confs = confs.squeeze(1)
start_idx = 0 if len(self.surfels) == 0 else len(pointcloud) - self.config.model.target_num_frames
end_idx = len(pointcloud)
for frame_idx in range(start_idx, end_idx):
surfels = self.pointmap_to_surfels(
pointmap=pointcloud[frame_idx],
focal_lengths=focal_lengths[frame_idx] * self.config.surfel.shrink_factor,
depths=depths[frame_idx],
confs=confs[frame_idx],
poses=c2ws_transformed[frame_idx],
estimate_normals=True,
radius_scale=self.config.surfel.radius_scale,
)
if len(self.surfels) > 0:
surfels, self.surfel_to_timestep = self.merge_surfels(
new_surfels=surfels,
current_timestep=frame_idx,
existing_surfels=self.surfels,
existing_surfel_to_timestep=self.surfel_to_timestep,
# position_threshold=self.config.surfel.merge_position_threshold,
normal_threshold=self.config.surfel.merge_normal_threshold
)
# Update timestep mapping
num_surfels = len(surfels)
surfel_start_index = len(self.surfels)
for surfel_index in range(num_surfels):
self.surfel_to_timestep[surfel_start_index + surfel_index] = [frame_idx]
self.surfels.extend(surfels)
if self.config.inference.visualize_surfel:
visualize_surfels(self.surfels, draw_normals=True, normal_scale=0.0003)
def get_translation_scaling_factor(self, c2ws):
# camera centering
"""
Args:
c2ws: camera-to-world matrices, shape: (N, 4, 4)
Returns:
translation_scaling_factor: translation scaling factor
"""
ref_c2ws = c2ws
camera_dist_2med = torch.norm(
ref_c2ws[:, :3, 3] - ref_c2ws[:, :3, 3].median(0, keepdim=True).values,
dim=-1,
)
valid_mask = camera_dist_2med <= torch.clamp(
torch.quantile(camera_dist_2med, 0.97) * 10,
max=1e6,
)
c2ws[:, :3, 3] -= ref_c2ws[valid_mask, :3, 3].mean(0, keepdim=True)
# camera normalization
camera_dists = c2ws[:, :3, 3].clone()
translation_scaling_factor = (
self.camera_scale
if torch.isclose(
torch.norm(camera_dists[0]),
torch.zeros(1).to(self.device, self.dtype),
atol=1e-5,
).any()
else (self.camera_scale / torch.norm(camera_dists[0]) + 0.01)
)
return translation_scaling_factor, c2ws
def get_cond(self, context_latents, all_c2ws, all_Ks, translation_scaling_factor, encoder_embeddings, input_masks):
context_encoder_embeddings = torch.mean(encoder_embeddings, dim=0)
input_masks = input_masks.bool()
# batch_size = context_latents.shape[0]
all_c2ws[:, :, [1, 2]] *= -1
all_w2cs = torch.linalg.inv(all_c2ws)
all_c2ws[:, :3, 3] *= translation_scaling_factor
all_w2cs[:, :3, 3] *= translation_scaling_factor
num_cameras = all_w2cs.shape[0]
pluckers = get_plucker_coordinates(
extrinsics_src=all_w2cs[:1],
extrinsics=all_w2cs,
intrinsics=all_Ks.float().clone(),
target_size=(context_latents.shape[-2], context_latents.shape[-1]),
) # [B, 3, 6, H, W]
target_latents = torch.nn.functional.pad(
torch.zeros(self.config.model.num_frames - context_latents.shape[0], *context_latents.shape[1:]), (0, 0, 0, 0, 0, 1), value=0
).to(self.device, self.dtype)
context_latents = torch.nn.functional.pad(
context_latents, (0, 0, 0, 0, 0, 1), value=1.0
)
c_crossattn = repeat(context_encoder_embeddings, "d -> n 1 d", n=num_cameras)
# c_crossattn = repeat(context_encoder_embeddings, "b 1 d -> b n 1 d", n=num_cameras)
uc_crossattn = torch.zeros_like(c_crossattn)
c_replace = torch.zeros((num_cameras, *context_latents.shape[1:])).to(self.device)
c_replace[input_masks] = context_latents
c_replace[~input_masks] = target_latents
uc_replace = torch.zeros_like(c_replace)
c_concat = torch.cat(
[
repeat(
input_masks,
"n ->n 1 h w",
h=pluckers.shape[-2],
w=pluckers.shape[-1],
),
pluckers,
],
1,
)
uc_concat = torch.cat(
[torch.zeros((num_cameras, 1, *pluckers.shape[-2:])).to(self.device), pluckers], 1
)
c_dense_vector = pluckers
uc_dense_vector = c_dense_vector
c = {
"crossattn": c_crossattn,
"replace": c_replace,
"concat": c_concat,
"dense_vector": c_dense_vector,
}
uc = {
"crossattn": uc_crossattn,
"replace": uc_replace,
"concat": uc_concat,
"dense_vector": uc_dense_vector,
}
return {"c": c,
"uc": uc,
"all_c2ws": all_c2ws,
"all_Ks": all_Ks,
"input_masks": input_masks,
"num_cameras": num_cameras}
def _generate_frames_for_trajectory(self, c2ws_tensor, Ks_tensor, use_non_maximum_suppression=None):
"""
Internal helper method to generate frames for a trajectory.
Args:
c2ws: List of camera-to-world matrices
Ks: List of camera intrinsic matrices
Returns:
List of all generated PIL frames
"""
padding_size = 0
# Determine generation steps based on trajectory length
generation_steps = (len(c2ws_tensor) + 1 - self.config.model.num_frames) // self.config.model.target_num_frames + 2
# Generate frames in steps
cur_start_idx = 0
for i in range(generation_steps):
# Calculate frame indices for this step
if i > 0:
cur_start_idx = cur_end_idx
if len(self.pil_frames) == 1: # first frame
cur_end_idx = min(cur_start_idx + self.config.model.num_frames - 1, len(c2ws_tensor))
else:
cur_end_idx = min(cur_start_idx + self.config.model.target_num_frames, len(c2ws_tensor))
target_length = cur_end_idx - cur_start_idx
if target_length <= 0:
break
# Handle padding for target frames if needed
if target_length < self.config.model.target_num_frames or (len(self.pil_frames) == 1 and target_length < self.config.model.num_frames - 1):
# Pad target_c2ws and target_Ks with the last frame
if len(self.pil_frames) == 1: # first frame
padding_size = self.config.model.num_frames - 1 - target_length
else:
padding_size = self.config.model.target_num_frames - target_length
padding = torch.tile(c2ws_tensor[cur_end_idx-1:cur_end_idx], (padding_size, 1, 1))
c2ws_tensor = torch.cat([c2ws_tensor, padding], dim=0)
padding_K = torch.tile(Ks_tensor[cur_end_idx-1:cur_end_idx], (padding_size, 1, 1))
Ks_tensor = torch.cat([Ks_tensor, padding_K], dim=0)
if len(self.pil_frames) == 1:
cur_end_idx = cur_start_idx + self.config.model.num_frames - 1
else:
cur_end_idx = cur_start_idx + self.config.model.target_num_frames
target_c2ws = c2ws_tensor[cur_start_idx:cur_end_idx]
target_Ks = Ks_tensor[cur_start_idx:cur_end_idx]
context_info = self.get_context_info(target_c2ws, use_non_maximum_suppression)
(context_c2ws,
context_latents,
context_encoder_embeddings,
context_Ks,
context_time_indices) \
= (context_info["context_c2ws"],
context_info["context_latents"],
context_info["context_encoder_embeddings"],
context_info["context_Ks"],
context_info["context_time_indices"])
# Prepare conditioning
all_c2ws = torch.cat([context_c2ws, target_c2ws], dim=0)
all_Ks = torch.cat([context_Ks, target_Ks], dim=0)
translation_scaling_factor, all_c2ws = self.get_translation_scaling_factor(all_c2ws)
input_masks = torch.cat([torch.ones(len(context_c2ws)), torch.zeros(len(target_c2ws))], dim=0).bool().to(self.device)
cond = self.get_cond(context_latents, all_c2ws, all_Ks, translation_scaling_factor, context_encoder_embeddings, input_masks)
# Generate samples
samples, samples_z = do_sample(self.model_wrapper,
self.vae,
self.denoiser,
self.sampler[0],
cond["c"],
cond["uc"],
cond["all_c2ws"],
cond["all_Ks"],
input_masks,
H=576, W=576, C=4, F=8, T=8,
cfg=self.config.model.cfg,
verbose=True,
global_pbar=None,
return_latents=True,
device=self.device)
# Process and store generated frames
target_num = torch.sum(~input_masks)
target_samples = samples[~input_masks]
target_pil_frames = [tensor_to_pil(target_samples[j]) for j in range(target_num)]
target_encoder_embeddings = encode_image(target_samples, self.image_encoder, self.device, self.dtype)
target_latents = samples_z[~input_masks]
for j in range(target_num - padding_size if padding_size > 0 else target_num):
self.latents.append(target_latents[j].detach().cpu().numpy())
self.encoder_embeddings.append(target_encoder_embeddings[j].detach().cpu().numpy())
self.Ks.append(target_Ks[j].detach().cpu().numpy())
self.c2ws.append(target_c2ws[j].detach().cpu().numpy())
self.pil_frames.append(target_pil_frames[j])
if self.config.inference.visualize:
self.pil_frames[-1].save(f"{self.config.visualization_dir}/final_{len(self.pil_frames):07d}.png")
# Update scene reconstruction if needed
self.construct_and_store_scene(self.pil_frames,
time_indices=context_time_indices,
niter=self.config.surfel.niter,
lr=self.config.surfel.lr,
device=self.device)
self.global_step += 1
if self.config.inference.visualize:
export_to_gif(self.pil_frames, f"{self.config.visualization_dir}/inference_all.gif")
# Return all frames or just the new ones
return self.pil_frames[-self.config.model.target_num_frames:] if len(self.pil_frames) > self.config.model.target_num_frames + 1 else self.pil_frames
def generate_trajectory_frames(self, c2ws: List[np.ndarray], Ks: List[np.ndarray], use_non_maximum_suppression=None):
"""
Generate frames for a new trajectory segment while maintaining the pipeline state.
This allows for interactive navigation through a scene.
Args:
c2ws: List of camera-to-world matrices for the new trajectory segment
Ks: List of camera intrinsic matrices for the new trajectory segment
Returns:
List of PIL images for the newly generated frames
"""
c2ws_tensor = torch.from_numpy(np.array(c2ws)).to(self.device, self.dtype)
Ks_tensor = torch.from_numpy(np.array(Ks)).to(self.device, self.dtype)
# translation_scaling_factor, c2ws_tensor = self.get_translation_scaling_factor(c2ws_tensor)
return self._generate_frames_for_trajectory(c2ws_tensor, Ks_tensor, use_non_maximum_suppression)
def undo_latest_move(self):
"""
Undo the latest move by deleting the most recent batch of camera poses, embeddings, and pil images.
This allows stepping back in the trajectory if navigation went in an undesired direction.
The method removes the last generated batch of frames (up to target_num_frames) since the pipeline
generates multiple frames at once during each generation step.
Returns:
bool: True if successfully removed the latest frames, False if there's nothing to remove
(e.g., only one frame in the pipeline)
"""
# Ensure we have more than one frame to avoid removing the initial frame
if len(self.pil_frames) <= 1:
print("Cannot undo: only one frame in the pipeline")
return False
# Determine how many frames to remove - up to target_num_frames
frames_to_remove = min(self.config.model.target_num_frames, len(self.pil_frames) - 1)
# Remove the latest entries from all state lists
for _ in range(frames_to_remove):
self.latents.pop()
self.encoder_embeddings.pop()
self.c2ws.pop()
self.Ks.pop()
self.pil_frames.pop()
# Handle surfels if using reconstructor
self.global_step -= frames_to_remove
for _ in range(frames_to_remove):
self.surfel_depths.pop()
# Find surfels that belong only to the removed timesteps
current_frame_count = len(self.pil_frames)
removed_timesteps = list(range(current_frame_count, current_frame_count + frames_to_remove))
surfels_to_remove = []
# Loop through surfel_to_timestep and update
updated_surfel_to_timestep = {}
for i, timesteps in self.surfel_to_timestep.items():
# Check if this surfel only belongs to removed frames
if all(ts in removed_timesteps for ts in timesteps):
surfels_to_remove.append(i)
else:
# Keep this surfel but remove the timesteps of removed frames
updated_timesteps = [ts for ts in timesteps if ts not in removed_timesteps]
updated_surfel_to_timestep[i] = updated_timesteps
# Now create new surfel list without the removed ones
updated_surfels = []
updated_final_surfel_to_timestep = {}
new_idx = 0
for i, surfel in enumerate(self.surfels):
if i not in surfels_to_remove:
updated_surfels.append(surfel)
updated_final_surfel_to_timestep[new_idx] = updated_surfel_to_timestep[i]
new_idx += 1
# Update surfel data
self.surfels = updated_surfels
self.surfel_to_timestep = updated_final_surfel_to_timestep
print(f"Successfully removed the latest {frames_to_remove} frames. {len(self.pil_frames)} frames remaining.")
return True
def __call__(self, image:torch.Tensor, c2ws: List[np.ndarray], Ks: List[np.ndarray]):
"""
Process an initial image and generate frames for a trajectory.
Args:
image: Initial image tensor
c2ws: Camera-to-world matrices for the trajectory
Ks: Camera intrinsic matrices for the trajectory
Returns:
List of PIL images for all generated frames
"""
# Initialize with the first frame
c2ws_tensor = torch.from_numpy(np.array(c2ws)).to(self.device, self.dtype)
Ks_tensor = torch.from_numpy(np.array(Ks)).to(self.device, self.dtype)
# translation_scaling_factor, c2ws_tensor = self.get_translation_scaling_factor(c2ws_tensor)
self.initialize(image, c2ws_tensor[0].detach().cpu().numpy(), Ks_tensor[0].detach().cpu().numpy())
return self._generate_frames_for_trajectory(c2ws_tensor[1:], Ks_tensor[1:])