Spaces:
Running
on
L4
Running
on
L4
from typing import Callable, Dict, List, Optional, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as TF | |
import kornia | |
from matplotlib import cm | |
from torchvision.io import write_video | |
from PIL import Image, ImageOps | |
import os | |
from typing import Union, Tuple, List | |
import math | |
from matplotlib import pyplot as plt | |
from mpl_toolkits.mplot3d.art3d import Poly3DCollection | |
DEFAULT_FOV_RAD = 0.9424777960769379 # 54 degrees by default | |
def get_default_intrinsics( | |
fov_rad=DEFAULT_FOV_RAD, | |
aspect_ratio=1.0, | |
): | |
if not isinstance(fov_rad, torch.Tensor): | |
fov_rad = torch.tensor( | |
[fov_rad] if isinstance(fov_rad, (int, float)) else fov_rad | |
) | |
if aspect_ratio >= 1.0: # W >= H | |
focal_x = 0.5 / torch.tan(0.5 * fov_rad) | |
focal_y = focal_x * aspect_ratio | |
else: # W < H | |
focal_y = 0.5 / torch.tan(0.5 * fov_rad) | |
focal_x = focal_y / aspect_ratio | |
intrinsics = focal_x.new_zeros((focal_x.shape[0], 3, 3)) | |
intrinsics[:, torch.eye(3, device=focal_x.device, dtype=bool)] = torch.stack( | |
[focal_x, focal_y, torch.ones_like(focal_x)], dim=-1 | |
) | |
intrinsics[:, :, -1] = torch.tensor( | |
[0.5, 0.5, 1.0], device=focal_x.device, dtype=focal_x.dtype | |
) | |
return intrinsics | |
def to_hom(X): | |
# get homogeneous coordinates of the input | |
X_hom = torch.cat([X, torch.ones_like(X[..., :1])], dim=-1) | |
return X_hom | |
def to_hom_pose(pose): | |
# get homogeneous coordinates of the input pose | |
if pose.shape[-2:] == (3, 4): | |
pose_hom = torch.eye(4, device=pose.device)[None].repeat(pose.shape[0], 1, 1) | |
pose_hom[:, :3, :] = pose | |
return pose_hom | |
return pose | |
def get_image_grid(img_h, img_w): | |
# add 0.5 is VERY important especially when your img_h and img_w | |
# is not very large (e.g., 72)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
y_range = torch.arange(img_h, dtype=torch.float32).add_(0.5) | |
x_range = torch.arange(img_w, dtype=torch.float32).add_(0.5) | |
Y, X = torch.meshgrid(y_range, x_range, indexing="ij") # [H,W] | |
xy_grid = torch.stack([X, Y], dim=-1).view(-1, 2) # [HW,2] | |
return to_hom(xy_grid) # [HW,3] | |
def img2cam(X, cam_intr): | |
return X @ cam_intr.inverse().transpose(-1, -2) | |
def cam2world(X, pose): | |
X_hom = to_hom(X) | |
pose_inv = torch.linalg.inv(to_hom_pose(pose))[..., :3, :4] | |
return X_hom @ pose_inv.transpose(-1, -2) | |
def get_center_and_ray(img_h, img_w, pose, intr): # [HW,2] | |
# given the intrinsic/extrinsic matrices, get the camera center and ray directions] | |
# assert(opt.camera.model=="perspective") | |
# compute center and ray | |
grid_img = get_image_grid(img_h, img_w) # [HW,3] | |
grid_3D_cam = img2cam(grid_img.to(intr.device), intr.float()) # [B,HW,3] | |
center_3D_cam = torch.zeros_like(grid_3D_cam) # [B,HW,3] | |
# transform from camera to world coordinates | |
grid_3D = cam2world(grid_3D_cam, pose) # [B,HW,3] | |
center_3D = cam2world(center_3D_cam, pose) # [B,HW,3] | |
ray = grid_3D - center_3D # [B,HW,3] | |
return center_3D, ray, grid_3D_cam | |
def get_plucker_coordinates( | |
extrinsics_src, | |
extrinsics, | |
intrinsics=None, | |
fov_rad=DEFAULT_FOV_RAD, | |
target_size=[72, 72], | |
): | |
# Support for batch dimension | |
has_batch_dim = len(extrinsics.shape) == 4 | |
if has_batch_dim: | |
# [B, N, 4, 4] -> reshape to handle batch | |
batch_size, num_cameras = extrinsics.shape[0:2] | |
extrinsics_flat = extrinsics.reshape(-1, *extrinsics.shape[2:]) | |
# Handle extrinsics_src appropriately | |
if len(extrinsics_src.shape) == 3: # [B, 4, 4] | |
extrinsics_src_expanded = extrinsics_src.unsqueeze(1).expand(-1, num_cameras, -1, -1) | |
extrinsics_src_flat = extrinsics_src_expanded.reshape(-1, *extrinsics_src.shape[1:]) | |
else: # [4, 4] - single extrinsics_src for all batches | |
extrinsics_src_flat = extrinsics_src.expand(batch_size * num_cameras, -1, -1) | |
# Handle intrinsics for batch | |
if intrinsics is None: | |
intrinsics = get_default_intrinsics(fov_rad).to(extrinsics.device) | |
intrinsics = intrinsics.expand(batch_size * num_cameras, -1, -1) | |
elif len(intrinsics.shape) == 3: # [N, 3, 3] | |
if intrinsics.shape[0] == num_cameras: | |
intrinsics = intrinsics.expand(batch_size, -1, -1, -1).reshape(-1, *intrinsics.shape[1:]) | |
else: | |
intrinsics = intrinsics.expand(batch_size * num_cameras, -1, -1) | |
elif len(intrinsics.shape) == 4: # [B, N, 3, 3] | |
intrinsics = intrinsics.reshape(-1, *intrinsics.shape[2:]) | |
else: | |
# Original behavior for non-batch input | |
extrinsics_flat = extrinsics | |
extrinsics_src_flat = extrinsics_src | |
if intrinsics is None: | |
intrinsics = get_default_intrinsics(fov_rad).to(extrinsics.device) | |
# Process intrinsics normalization | |
if not ( | |
torch.all(intrinsics[:, :2, -1] >= 0) | |
and torch.all(intrinsics[:, :2, -1] <= 1) | |
): | |
intrinsics[:, :2] /= intrinsics.new_tensor(target_size).view(1, -1, 1) * 8 | |
# Ensure normalized intrinsics | |
assert ( | |
torch.all(intrinsics[:, :2, -1] >= 0) | |
and torch.all(intrinsics[:, :2, -1] <= 1) | |
), "Intrinsics should be expressed in resolution-independent normalized image coordinates." | |
c2w_src = torch.linalg.inv(extrinsics_src_flat) | |
# transform coordinates from the source camera's coordinate system to the coordinate system of the respective camera | |
extrinsics_rel = torch.einsum( | |
"vnm,vmp->vnp", extrinsics_flat, c2w_src | |
) | |
intrinsics[:, :2] *= extrinsics_flat.new_tensor( | |
[ | |
target_size[1], # w | |
target_size[0], # h | |
] | |
).view(1, -1, 1) | |
centers, rays, grid_cam = get_center_and_ray( | |
img_h=target_size[0], | |
img_w=target_size[1], | |
pose=extrinsics_rel[:, :3, :], | |
intr=intrinsics, | |
) | |
rays = torch.nn.functional.normalize(rays, dim=-1) | |
plucker = torch.cat((rays, torch.cross(centers, rays, dim=-1)), dim=-1) | |
plucker = plucker.permute(0, 2, 1).reshape(plucker.shape[0], -1, *target_size) | |
# Reshape back to batch dimension if needed | |
if has_batch_dim: | |
plucker = plucker.reshape(batch_size, num_cameras, *plucker.shape[1:]) | |
return plucker | |
def get_value_dict( | |
curr_imgs, | |
curr_imgs_clip, | |
curr_input_frame_indices, | |
curr_c2ws, | |
curr_Ks, | |
curr_input_camera_indices, | |
all_c2ws, | |
camera_scale, | |
): | |
assert sorted(curr_input_camera_indices) == sorted( | |
range(len(curr_input_camera_indices)) | |
) | |
H, W, T, F = curr_imgs.shape[-2], curr_imgs.shape[-1], len(curr_imgs), 8 | |
value_dict = {} | |
value_dict["cond_frames_without_noise"] = curr_imgs_clip[curr_input_frame_indices] | |
value_dict["cond_frames"] = curr_imgs + 0.0 * torch.randn_like(curr_imgs) | |
value_dict["cond_frames_mask"] = torch.zeros(T, dtype=torch.bool) | |
value_dict["cond_frames_mask"][curr_input_frame_indices] = True | |
value_dict["cond_aug"] = 0.0 | |
if curr_c2ws.shape[-1] == 3: | |
c2w = to_hom_pose(curr_c2ws.float()) | |
else: | |
c2w = curr_c2ws | |
w2c = torch.linalg.inv(c2w) | |
# camera centering | |
ref_c2ws = all_c2ws | |
camera_dist_2med = torch.norm( | |
ref_c2ws[:, :3, 3] - ref_c2ws[:, :3, 3].median(0, keepdim=True).values, | |
dim=-1, | |
) | |
valid_mask = camera_dist_2med <= torch.clamp( | |
torch.quantile(camera_dist_2med, 0.97) * 10, | |
max=1e6, | |
) | |
c2w[:, :3, 3] -= ref_c2ws[valid_mask, :3, 3].mean(0, keepdim=True) | |
w2c = torch.linalg.inv(c2w) | |
# camera normalization | |
camera_dists = c2w[:, :3, 3].clone() | |
translation_scaling_factor = ( | |
camera_scale | |
if torch.isclose( | |
torch.norm(camera_dists[0]), | |
torch.zeros(1), | |
atol=1e-5, | |
).any() | |
else (camera_scale / torch.norm(camera_dists[0])) | |
) | |
w2c[:, :3, 3] *= translation_scaling_factor | |
c2w[:, :3, 3] *= translation_scaling_factor | |
value_dict["plucker_coordinate"] = get_plucker_coordinates( | |
extrinsics_src=w2c[0], | |
extrinsics=w2c, | |
intrinsics=curr_Ks.float().clone(), | |
target_size=(H // F, W // F), | |
) | |
value_dict["c2w"] = c2w | |
value_dict["K"] = curr_Ks | |
value_dict["camera_mask"] = torch.zeros(T, dtype=torch.bool) | |
value_dict["camera_mask"][curr_input_camera_indices] = True | |
return value_dict | |
def parse_meta_data(file_path, image_height=288, image_width=512): | |
with open(file_path, 'r') as file: | |
lines = file.readlines() | |
# First line is the video URL | |
video_url = lines[0].strip() | |
line = lines[1] | |
data = line.strip().split() | |
# Construct the camera intrinsics matrix K | |
focal_length_x = float(data[1]) | |
focal_length_y = float(data[2]) | |
principal_point_x = float(data[3]) | |
principal_point_y = float(data[4]) | |
original_K = [ | |
[focal_length_x, 0, principal_point_x], | |
[0, focal_length_y, principal_point_y], | |
[0, 0, 1] | |
] | |
K = [ | |
[focal_length_x * image_width, 0, principal_point_x * image_width], | |
[0, focal_length_y * image_height, principal_point_y * image_height], | |
[0, 0, 1] | |
] | |
# Initialize a list to store frame data | |
timestamp_to_c2ws = {} | |
timestamps = [] | |
# Process each frame line | |
for line in lines[1:]: | |
data = line.strip().split() | |
timestamp = int(data[0]) | |
R_t = [float(x) for x in data[7:]] | |
P = [ | |
R_t[0:4], | |
R_t[4:8], | |
R_t[8:12], | |
[0, 0, 0, 1] | |
] | |
timestamp_to_c2ws[timestamp] = np.array(P) | |
timestamps.append(timestamp) | |
return timestamps, np.array(K), timestamp_to_c2ws, original_K | |
def get_wh_with_fixed_shortest_side(w, h, size): | |
# size is smaller or equal to zero, we return original w h | |
if size is None or size <= 0: | |
return w, h | |
if w < h: | |
new_w = size | |
new_h = int(size * h / w) | |
else: | |
new_h = size | |
new_w = int(size * w / h) | |
return new_w, new_h | |
def get_resizing_factor( | |
target_shape: Tuple[int, int], # H, W | |
current_shape: Tuple[int, int], # H, W | |
cover_target: bool = True, | |
# If True, the output shape will fully cover the target shape. | |
# If No, the target shape will fully cover the output shape. | |
) -> float: | |
r_bound = target_shape[1] / target_shape[0] | |
aspect_r = current_shape[1] / current_shape[0] | |
if r_bound >= 1.0: | |
if cover_target: | |
if aspect_r >= r_bound: | |
factor = min(target_shape) / min(current_shape) | |
elif aspect_r < 1.0: | |
factor = max(target_shape) / min(current_shape) | |
else: | |
factor = max(target_shape) / max(current_shape) | |
else: | |
if aspect_r >= r_bound: | |
factor = max(target_shape) / max(current_shape) | |
elif aspect_r < 1.0: | |
factor = min(target_shape) / max(current_shape) | |
else: | |
factor = min(target_shape) / min(current_shape) | |
else: | |
if cover_target: | |
if aspect_r <= r_bound: | |
factor = min(target_shape) / min(current_shape) | |
elif aspect_r > 1.0: | |
factor = max(target_shape) / min(current_shape) | |
else: | |
factor = max(target_shape) / max(current_shape) | |
else: | |
if aspect_r <= r_bound: | |
factor = max(target_shape) / max(current_shape) | |
elif aspect_r > 1.0: | |
factor = min(target_shape) / max(current_shape) | |
else: | |
factor = min(target_shape) / min(current_shape) | |
return factor | |
def transform_img_and_K( | |
image: torch.Tensor, | |
size: Union[int, Tuple[int, int]], | |
scale: float = 1.0, | |
center: Tuple[float, float] = (0.5, 0.5), | |
K: Union[torch.Tensor, np.ndarray, None] = None, | |
size_stride: int = 1, | |
mode: str = "crop", | |
): | |
assert mode in [ | |
"crop", | |
"pad", | |
"stretch", | |
], f"mode should be one of ['crop', 'pad', 'stretch'], got {mode}" | |
h, w = image.shape[-2:] | |
if isinstance(size, (tuple, list)): | |
# => if size is a tuple or list, we first rescale to fully cover the `size` | |
# area and then crop the `size` area from the rescale image | |
W, H = size | |
else: | |
# => if size is int, we rescale the image to fit the shortest side to size | |
# => if size is None, no rescaling is applied | |
W, H = get_wh_with_fixed_shortest_side(w, h, size) | |
W, H = ( | |
math.floor(W / size_stride + 0.5) * size_stride, | |
math.floor(H / size_stride + 0.5) * size_stride, | |
) | |
if mode == "stretch": | |
rh, rw = H, W | |
else: | |
rfs = get_resizing_factor( | |
(H, W), | |
(h, w), | |
cover_target=mode != "pad", | |
) | |
(rh, rw) = [int(np.ceil(rfs * s)) for s in (h, w)] | |
rh, rw = int(rh / scale), int(rw / scale) | |
image = torch.nn.functional.interpolate( | |
image, (rh, rw), mode="area", antialias=False | |
) | |
cy_center = int(center[1] * image.shape[-2]) | |
cx_center = int(center[0] * image.shape[-1]) | |
if mode != "pad": | |
ct = max(0, cy_center - H // 2) | |
cl = max(0, cx_center - W // 2) | |
ct = min(ct, image.shape[-2] - H) | |
cl = min(cl, image.shape[-1] - W) | |
image = TF.crop(image, top=ct, left=cl, height=H, width=W) | |
pl, pt = 0, 0 | |
else: | |
pt = max(0, H // 2 - cy_center) | |
pl = max(0, W // 2 - cx_center) | |
pb = max(0, H - pt - image.shape[-2]) | |
pr = max(0, W - pl - image.shape[-1]) | |
image = TF.pad( | |
image, | |
[pl, pt, pr, pb], | |
) | |
cl, ct = 0, 0 | |
if K is not None: | |
K = K.clone() | |
# K[:, :2, 2] += K.new_tensor([pl, pt]) | |
if torch.all(K[:, :2, -1] >= 0) and torch.all(K[:, :2, -1] <= 1): | |
K[:, :2] *= K.new_tensor([rw, rh])[None, :, None] # normalized K | |
else: | |
K[:, :2] *= K.new_tensor([rw / w, rh / h])[None, :, None] # unnormalized K | |
K[:, :2, 2] += K.new_tensor([pl - cl, pt - ct]) | |
return image, K | |
def load_img_and_K( | |
image_path_or_size: Union[str, torch.Size], | |
size: Optional[Union[int, Tuple[int, int]]], | |
scale: float = 1.0, | |
center: Tuple[float, float] = (0.5, 0.5), | |
K: Union[torch.Tensor, np.ndarray, None] = None, | |
size_stride: int = 1, | |
center_crop: bool = False, | |
image_as_tensor: bool = True, | |
context_rgb: Union[np.ndarray, None] = None, | |
device: str = "cuda", | |
): | |
if isinstance(image_path_or_size, torch.Size): | |
image = Image.new("RGBA", image_path_or_size[::-1]) | |
else: | |
image = Image.open(image_path_or_size).convert("RGBA") | |
w, h = image.size | |
if size is None: | |
size = (w, h) | |
image = np.array(image).astype(np.float32) / 255 | |
if image.shape[-1] == 4: | |
rgb, alpha = image[:, :, :3], image[:, :, 3:] | |
if context_rgb is not None: | |
image = rgb * alpha + context_rgb * (1 - alpha) | |
else: | |
image = rgb * alpha + (1 - alpha) | |
image = image.transpose(2, 0, 1) | |
image = torch.from_numpy(image).to(dtype=torch.float32) | |
image = image.unsqueeze(0) | |
if isinstance(size, (tuple, list)): | |
# => if size is a tuple or list, we first rescale to fully cover the `size` | |
# area and then crop the `size` area from the rescale image | |
W, H = size | |
else: | |
# => if size is int, we rescale the image to fit the shortest side to size | |
# => if size is None, no rescaling is applied | |
W, H = get_wh_with_fixed_shortest_side(w, h, size) | |
W, H = ( | |
math.floor(W / size_stride + 0.5) * size_stride, | |
math.floor(H / size_stride + 0.5) * size_stride, | |
) | |
rfs = get_resizing_factor((math.floor(H * scale), math.floor(W * scale)), (h, w)) | |
resize_size = rh, rw = [int(np.ceil(rfs * s)) for s in (h, w)] | |
image = torch.nn.functional.interpolate( | |
image, resize_size, mode="area", antialias=False | |
) | |
if scale < 1.0: | |
pw = math.ceil((W - resize_size[1]) * 0.5) | |
ph = math.ceil((H - resize_size[0]) * 0.5) | |
image = F.pad(image, (pw, pw, ph, ph), "constant", 1.0) | |
cy_center = int(center[1] * image.shape[-2]) | |
cx_center = int(center[0] * image.shape[-1]) | |
if center_crop: | |
side = min(H, W) | |
ct = max(0, cy_center - side // 2) | |
cl = max(0, cx_center - side // 2) | |
ct = min(ct, image.shape[-2] - side) | |
cl = min(cl, image.shape[-1] - side) | |
image = TF.crop(image, top=ct, left=cl, height=side, width=side) | |
else: | |
ct = max(0, cy_center - H // 2) | |
cl = max(0, cx_center - W // 2) | |
ct = min(ct, image.shape[-2] - H) | |
cl = min(cl, image.shape[-1] - W) | |
image = TF.crop(image, top=ct, left=cl, height=H, width=W) | |
if K is not None: | |
K = K.clone() | |
if torch.all(K[:2, -1] >= 0) and torch.all(K[:2, -1] <= 1): | |
K[:2] *= K.new_tensor([rw, rh])[:, None] # normalized K | |
else: | |
K[:2] *= K.new_tensor([rw / w, rh / h])[:, None] # unnormalized K | |
K[:2, 2] -= K.new_tensor([cl, ct]) | |
if image_as_tensor: | |
# tensor of shape (1, 3, H, W) with values ranging from (-1, 1) | |
image = image.to(device) * 2.0 - 1.0 | |
else: | |
# PIL Image with values ranging from (0, 255) | |
image = image.permute(0, 2, 3, 1).numpy()[0] | |
image = Image.fromarray((image * 255).astype(np.uint8)) | |
return image, K | |
def geodesic_distance(extrinsic1: Union[np.ndarray, torch.Tensor], | |
extrinsic2: Union[np.ndarray, torch.Tensor], | |
weight_translation: float = 0.01,): | |
""" | |
Computes the geodesic distance between two camera poses in SE(3). | |
Parameters: | |
extrinsic1 (Union[np.ndarray, torch.Tensor]): 4x4 extrinsic matrix of the first pose. | |
extrinsic2 (Union[np.ndarray, torch.Tensor]): 4x4 extrinsic matrix of the second pose. | |
Returns: | |
Union[float, torch.Tensor]: Geodesic distance between the two poses. | |
""" | |
if torch.is_tensor(extrinsic1): | |
# Extract the rotation and translation components | |
R1 = extrinsic1[:3, :3] | |
t1 = extrinsic1[:3, 3] | |
R2 = extrinsic2[:3, :3] | |
t2 = extrinsic2[:3, 3] | |
# Compute the translation distance (Euclidean distance) | |
translation_distance = torch.norm(t1 - t2) | |
# Compute the relative rotation matrix | |
R_relative = torch.matmul(R1.T, R2) | |
# Compute the angular distance from the trace of the relative rotation matrix | |
trace_value = torch.trace(R_relative) | |
# Clamp the trace value to avoid numerical issues | |
trace_value = torch.clamp(trace_value, -1.0, 3.0) | |
angular_distance = torch.acos((trace_value - 1) / 2) | |
else: | |
# Extract the rotation and translation components | |
R1 = extrinsic1[:3, :3] | |
t1 = extrinsic1[:3, 3] | |
R2 = extrinsic2[:3, :3] | |
t2 = extrinsic2[:3, 3] | |
# Compute the translation distance (Euclidean distance) | |
translation_distance = np.linalg.norm(t1 - t2) | |
# Compute the relative rotation matrix | |
R_relative = np.dot(R1.T, R2) | |
# Compute the angular distance from the trace of the relative rotation matrix | |
trace_value = np.trace(R_relative) | |
# Clamp the trace value to avoid numerical issues | |
trace_value = np.clip(trace_value, -1.0, 3.0) | |
angular_distance = np.arccos((trace_value - 1) / 2) | |
# Combine the two distances | |
geodesic_dist = translation_distance*weight_translation + angular_distance | |
return geodesic_dist | |
def inverse_geodesic_distance(extrinsic1, | |
extrinsic2, | |
weight_translation=0.01): | |
""" | |
Computes the inverse geodesic distance between two camera poses in SE(3). | |
Parameters: | |
extrinsic1 (np.ndarray): 4x4 extrinsic matrix of the first pose. | |
extrinsic2 (np.ndarray): 4x4 extrinsic matrix of the second pose. | |
Returns: | |
float: Inverse geodesic distance between the two poses. | |
""" | |
# Compute the geodesic distance | |
geodesic_dist = geodesic_distance(extrinsic1, extrinsic2, weight_translation) | |
# Compute the inverse geodesic distance | |
inverse_geodesic_dist = 1.0 / (geodesic_dist + 1e-6) | |
return inverse_geodesic_dist | |
def average_camera_pose(camera_poses): | |
""" | |
Compute a better average of camera poses in SE(3). | |
Args: | |
camera_poses: List or array of camera poses, each a 4x4 matrix | |
Returns: | |
Average camera pose as a 4x4 matrix | |
""" | |
# Extract rotation and translation components | |
rotations = camera_poses[:, :3, :3].detach().cpu().numpy() | |
translations = camera_poses[:, :3, 3].detach().cpu().numpy() | |
# Average translation with simple mean | |
avg_translation = np.mean(translations, axis=0) | |
# Convert rotations to quaternions for better averaging | |
import scipy.spatial.transform as transform | |
quats = [transform.Rotation.from_matrix(R).as_quat() for R in rotations] | |
# Ensure quaternions are in the same hemisphere to avoid issues with averaging | |
for i in range(1, len(quats)): | |
if np.dot(quats[0], quats[i]) < 0: | |
quats[i] = -quats[i] | |
# Average the quaternions and convert back to rotation matrix | |
avg_quat = np.mean(quats, axis=0) | |
avg_quat = avg_quat / np.linalg.norm(avg_quat) # Normalize | |
avg_rotation = transform.Rotation.from_quat(avg_quat).as_matrix() | |
# Construct the average pose | |
avg_pose = np.eye(4) | |
avg_pose[:3, :3] = avg_rotation | |
avg_pose[:3, 3] = avg_translation | |
return avg_pose | |
def encode_image( | |
image, | |
image_encoder, | |
device, | |
dtype, | |
) -> torch.Tensor: | |
image = image.to(device=device, dtype=dtype) | |
image_embeddings = image_encoder(image) | |
return image_embeddings | |
def encode_vae_image( | |
image, | |
vae, | |
device, | |
dtype, | |
): | |
image = image.to(device=device, dtype=dtype) | |
image_latents = vae.encode(image, 1) | |
return image_latents | |
def do_sample( | |
model, | |
ae, | |
denoiser, | |
sampler, | |
c, | |
uc, | |
c2w, | |
K, | |
cond_frames_mask, | |
H=576, | |
W=768, | |
C=4, | |
F=8, | |
T=8, | |
cfg=2.0, | |
decoding_t=1, | |
verbose=True, | |
global_pbar=None, | |
return_latents=False, | |
device: str = "cuda", | |
**_, | |
): | |
num_samples = [1, T] | |
with torch.inference_mode(), torch.autocast("cuda"): | |
additional_model_inputs = {"num_frames": T} | |
additional_sampler_inputs = { | |
"c2w": c2w.to("cuda"), | |
"K": K.to("cuda"), | |
"input_frame_mask": cond_frames_mask.to("cuda"), | |
} | |
if global_pbar is not None: | |
additional_sampler_inputs["global_pbar"] = global_pbar | |
shape = (math.prod(num_samples), C, H // F, W // F) | |
randn = torch.randn(shape).to(device) | |
samples_z = sampler( | |
lambda input, sigma, c: denoiser( | |
model, | |
input, | |
sigma, | |
c, | |
**additional_model_inputs, | |
), | |
randn, | |
scale=cfg, | |
cond=c, | |
uc=uc, | |
verbose=verbose, | |
**additional_sampler_inputs, | |
) | |
if samples_z is None: | |
return | |
samples = ae.decode(samples_z, decoding_t) | |
if return_latents: | |
return samples, samples_z | |
return samples | |
def decode_output( | |
samples, | |
T, | |
indices=None, | |
): | |
# decode model output into dict if it is not | |
if isinstance(samples, dict): | |
# model with postprocessor and outputs dict q`` | |
for sample, value in samples.items(): | |
if isinstance(value, torch.Tensor): | |
value = value.detach().cpu() | |
elif isinstance(value, np.ndarray): | |
value = torch.from_numpy(value) | |
else: | |
value = torch.tensor(value) | |
if indices is not None and value.shape[0] == T: | |
value = value[indices] | |
samples[sample] = value | |
else: | |
# model without postprocessor and outputs tensor (rgb) | |
samples = samples.detach().cpu() | |
if indices is not None and samples.shape[0] == T: | |
samples = samples[indices] | |
samples = {"samples-rgb/image": samples} | |
return samples | |
def select_frames(timestamps, min_num_frames=2, skip_frame=10, random_start=False): | |
""" | |
Select frames from a video sequence based on defined criteria. | |
Args: | |
timestamps: List of timestamps for the frames | |
min_num_frames: Minimum number of frames required | |
skip_frame: Number of frames to skip between selections | |
random_start: If True, start from a random frame | |
Returns: | |
tuple: (selected_frame_indices, selected_frame_timestamps) or (None, None) if criteria not met | |
""" | |
num_frames = len(timestamps) | |
if num_frames < min_num_frames: | |
print(f"[Worker PID={os.getpid()}] Episode has less than {min_num_frames} frames") | |
return None, None | |
# Decide on start/end frames | |
if num_frames < 2: | |
print(f"[Worker PID={os.getpid()}] Episode has less than 2 frames") | |
return None, None | |
elif num_frames < skip_frame: | |
cur_skip_frame = num_frames - 1 | |
else: | |
cur_skip_frame = skip_frame | |
if random_start: | |
start_frame = np.random.randint(0, skip_frame) | |
else: | |
start_frame = 0 | |
# Gather frame indices | |
selected_frame_indices = list(range(start_frame, num_frames, cur_skip_frame)) | |
selected_frame_timestamps = [timestamps[i] for i in selected_frame_indices] | |
return selected_frame_indices, selected_frame_timestamps | |
def tensor2im(input_image, imtype=np.uint8): | |
if not isinstance(input_image, np.ndarray): | |
if isinstance(input_image, torch.Tensor): # get the data from a variable | |
image_tensor = input_image.data | |
else: | |
return input_image | |
image_numpy = image_tensor[0].clamp(0.0, 1.0).cpu().float().numpy() # convert it into a numpy array | |
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 # post-processing: tranpose and scaling | |
else: # if it is a numpy array, do nothing | |
image_numpy = input_image | |
return image_numpy.astype(imtype) | |
class LatentStorer: | |
def __init__(self): | |
self.latent = None | |
def __call__(self, i, t, latent): | |
self.latent = latent | |
def sobel_filter(disp, mode="sobel", beta=10.0): | |
sobel_grad = kornia.filters.spatial_gradient(disp, mode=mode, normalized=False) | |
sobel_mag = torch.sqrt(sobel_grad[:, :, 0, Ellipsis] ** 2 + sobel_grad[:, :, 1, Ellipsis] ** 2) | |
alpha = torch.exp(-1.0 * beta * sobel_mag).detach() | |
return alpha | |
def apply_colormap(image, cmap="viridis"): | |
colormap = cm.get_cmap(cmap) | |
colormap = torch.tensor(colormap.colors).to(image.device) | |
image_long = (image * 255).long() | |
image_long_min = torch.min(image_long) | |
image_long_max = torch.max(image_long) | |
assert image_long_min >= 0, f"the min value is {image_long_min}" | |
assert image_long_max <= 255, f"the max value is {image_long_max}" | |
return colormap[image_long[..., 0]] | |
def apply_depth_colormap( | |
depth, | |
near_plane=None, | |
far_plane=None, | |
cmap="viridis", | |
): | |
near_plane = near_plane or float(torch.min(depth)) | |
far_plane = far_plane or float(torch.max(depth)) | |
depth = (depth - near_plane) / (far_plane - near_plane + 1e-10) | |
depth = torch.clip(depth, 0, 1) | |
colored_image = apply_colormap(depth, cmap=cmap) | |
return colored_image | |
def save_video(video, path, fps=10): | |
video = video.permute(0, 2, 3, 1) | |
video_codec = "libx264" | |
video_options = { | |
"crf": "23", # Constant Rate Factor (lower value = higher quality, 18 is a good balance) | |
"preset": "slow", | |
} | |
write_video(str(path), video, fps=fps, video_codec=video_codec, options=video_options) | |
def visualize_camera_poses(camera_poses, axis_length=0.1): | |
""" | |
Visualizes a set of camera poses in 3D using Matplotlib. | |
Parameters | |
---------- | |
camera_poses : np.ndarray | |
An array of shape (N, 4, 4) containing N camera poses. | |
Each pose is a 4x4 transformation matrix. | |
axis_length : float | |
Length of the camera axes to draw. | |
""" | |
if isinstance(camera_poses, torch.Tensor): | |
camera_poses = camera_poses.detach().cpu().numpy() | |
# Create a 3D figure | |
fig = plt.figure() | |
ax = fig.add_subplot(111, projection='3d') | |
# Iterate over all camera poses | |
for i in range(camera_poses.shape[0]): | |
# Extract rotation (R) and translation (t) | |
R = camera_poses[i][:3, :3] | |
t = camera_poses[i][:3, 3] | |
# Plot the camera center | |
ax.scatter(t[0], t[1], t[2], c='k', marker='o', s=20) | |
# Define the end-points of each local axis | |
x_axis_end = t + R[:, 0] * axis_length | |
y_axis_end = t + R[:, 1] * axis_length | |
z_axis_end = t + R[:, 2] * axis_length | |
# Draw the axes as lines | |
ax.plot([t[0], x_axis_end[0]], [t[1], x_axis_end[1]], | |
[t[2], x_axis_end[2]], color='r') # X-axis (red) | |
ax.plot([t[0], y_axis_end[0]], [t[1], y_axis_end[1]], | |
[t[2], y_axis_end[2]], color='g') # Y-axis (green) | |
ax.plot([t[0], z_axis_end[0]], [t[1], z_axis_end[1]], | |
[t[2], z_axis_end[2]], color='b') # Z-axis (blue) | |
# Make axes have equal scale | |
set_axes_equal(ax) | |
ax.set_title("Camera Poses Visualization") | |
ax.set_xlabel("X") | |
ax.set_ylabel("Y") | |
ax.set_zlabel("Z") | |
plt.show() | |
def set_axes_equal(ax): | |
""" | |
Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc. | |
This is a workaround to Matplotlib's set_aspect('equal') which is not supported in 3D. | |
""" | |
x_limits = ax.get_xlim3d() | |
y_limits = ax.get_ylim3d() | |
z_limits = ax.get_zlim3d() | |
x_range = x_limits[1] - x_limits[0] | |
y_range = y_limits[1] - y_limits[0] | |
z_range = z_limits[1] - z_limits[0] | |
max_range = max(x_range, y_range, z_range) | |
x_middle = np.mean(x_limits) | |
y_middle = np.mean(y_limits) | |
z_middle = np.mean(z_limits) | |
ax.set_xlim3d([x_middle - 0.5 * max_range, x_middle + 0.5 * max_range]) | |
ax.set_ylim3d([y_middle - 0.5 * max_range, y_middle + 0.5 * max_range]) | |
ax.set_zlim3d([z_middle - 0.5 * max_range, z_middle + 0.5 * max_range]) | |
def tensor_to_pil(image): | |
if isinstance(image, torch.Tensor): | |
if image.dim() == 4: | |
image = image.squeeze(0) | |
image = image.permute(1, 2, 0).detach().cpu().numpy() | |
# Detect the range of the input tensor | |
if image.min() < -0.1: # If we have negative values, assume [-1, 1] range | |
image = (image + 1) / 2.0 # Convert from [-1, 1] to [0, 1] | |
# Otherwise, assume it's already in [0, 1] range | |
image = (image * 255) | |
image = np.clip(image, 0, 255) | |
image = image.astype(np.uint8) | |
return Image.fromarray(image) | |
def center_crop_pil_image(input_image, target_width=1024, target_height=576): | |
w, h = input_image.size | |
h_ratio = h / target_height | |
w_ratio = w / target_width | |
if h_ratio > w_ratio: | |
h = int(h / w_ratio) | |
if h < target_height: | |
h = target_height | |
input_image = input_image.resize((target_width, h), Image.Resampling.LANCZOS) | |
else: | |
w = int(w / h_ratio) | |
if w < target_width: | |
w = target_width | |
input_image = input_image.resize((w, target_height), Image.Resampling.LANCZOS) | |
return ImageOps.fit(input_image, (target_width, target_height), Image.BICUBIC) | |
def resize_pil_image(img, long_edge_size): | |
S = max(img.size) | |
if S > long_edge_size: | |
interp = PIL.Image.LANCZOS | |
elif S <= long_edge_size: | |
interp = PIL.Image.BICUBIC | |
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size) | |
return img.resize(new_size, interp) | |
def visualize_surfels( | |
surfels, | |
draw_normals=False, | |
normal_scale=20, | |
disk_resolution=16, | |
disk_alpha=0.5 | |
): | |
""" | |
Visualize surfels as 2D disks oriented by their normals in 3D using matplotlib. | |
Args: | |
surfels (list of Surfel): Each Surfel has at least: | |
- position: (x, y, z) | |
- normal: (nx, ny, nz) | |
- radius: scalar | |
- color: (R, G, B) in [0..255] (optional) | |
draw_normals (bool): If True, draws the surfel normals as quiver arrows. | |
normal_scale (float): Scale factor for the normal arrows. | |
disk_resolution (int): Number of segments to approximate each disk. | |
disk_alpha (float): Alpha (transparency) for the filled disks. | |
""" | |
fig = plt.figure() | |
ax = fig.add_subplot(111, projection='3d') | |
# Prepare arrays for optional quiver (if draw_normals=True) | |
positions = [] | |
normals = [] | |
# We'll accumulate 3D polygons in a list for Poly3DCollection | |
polygons = [] | |
polygon_colors = [] | |
for s in surfels: | |
# --- Extract surfel data --- | |
position = s.position | |
normal = s.normal | |
radius = s.radius | |
if isinstance(position, torch.Tensor): | |
x, y, z = position.detach().cpu().numpy() | |
nx, ny, nz = normal.detach().cpu().numpy() | |
radius = radius.detach().cpu().numpy() | |
else: | |
x, y, z = position | |
nx, ny, nz = normal | |
radius = radius | |
# Convert color from [0..255] to [0..1], or use default | |
if s.color is None: | |
color = (0.2, 0.6, 1.0) # Light blue | |
else: | |
r, g, b = s.color | |
color = (r/255.0, g/255.0, b/255.0) | |
# --- Build local coordinate axes for the disk --- | |
normal = np.array([nx, ny, nz], dtype=float) | |
norm_len = np.linalg.norm(normal) | |
# Skip degenerate normals to avoid nan | |
if norm_len < 1e-12: | |
continue | |
normal /= norm_len | |
# Pick an 'up' vector that is not too close to the normal | |
# so we can build a tangent plane | |
up = np.array([0, 0, 1], dtype=float) | |
if abs(normal.dot(up)) > 0.9: | |
up = np.array([0, 1, 0], dtype=float) | |
# xAxis = normal x up | |
xAxis = np.cross(normal, up) | |
xAxis /= np.linalg.norm(xAxis) | |
# yAxis = normal x xAxis | |
yAxis = np.cross(normal, xAxis) | |
yAxis /= np.linalg.norm(yAxis) | |
# --- Create a circle of 'disk_resolution' segments in local 2D coords --- | |
angles = np.linspace(0, 2*np.pi, disk_resolution, endpoint=False) | |
circle_points_3d = [] | |
for theta in angles: | |
# local 2D circle: (r*cosθ, r*sinθ) | |
px = radius * np.cos(theta) | |
py = radius * np.sin(theta) | |
# transform to 3D world space: position + px*xAxis + py*yAxis | |
world_pt = np.array([x, y, z]) + px * xAxis + py * yAxis | |
circle_points_3d.append(world_pt) | |
# We have a list of [x, y, z]. For a filled polygon, Poly3DCollection | |
# wants them as a single Nx3 array. | |
circle_points_3d = np.array(circle_points_3d) | |
polygons.append(circle_points_3d) | |
polygon_colors.append(color) | |
# Collect positions and normals for quiver (if used) | |
positions.append([x, y, z]) | |
normals.append(normal) | |
# --- Draw the disks as polygons --- | |
poly_collection = Poly3DCollection( | |
polygons, | |
facecolors=polygon_colors, | |
edgecolors='k', # black edge | |
linewidths=0.5, | |
alpha=disk_alpha | |
) | |
ax.add_collection3d(poly_collection) | |
# --- Optionally draw normal vectors (quiver) --- | |
if draw_normals and len(positions) > 0: | |
X = [p[0] for p in positions] | |
Y = [p[1] for p in positions] | |
Z = [p[2] for p in positions] | |
Nx = [n[0] for n in normals] | |
Ny = [n[1] for n in normals] | |
Nz = [n[2] for n in normals] | |
# Note: If your scene is large, you may want to increase `length`. | |
ax.quiver( | |
X, Y, Z, | |
Nx, Ny, Nz, | |
length=normal_scale, | |
color='red', | |
normalize=True | |
) | |
# --- Axis labels, aspect ratio, etc. --- | |
ax.set_xlabel('X') | |
ax.set_ylabel('Y') | |
ax.set_zlabel('Z') | |
try: | |
ax.set_box_aspect((1, 1, 1)) | |
except AttributeError: | |
pass # older MPL versions | |
plt.title("Surfels as Disks (Oriented by Normal)") | |
plt.show() | |
def visualize_pointcloud( | |
points, | |
colors=None, | |
title='Point Cloud', | |
point_size=1, | |
alpha=1.0 | |
): | |
""" | |
Visualize a 3D point cloud using Matplotlib, with an option to provide | |
per-point RGB or RGBA colors, ensuring equal scaling for the x, y, and z axes. | |
Parameters | |
---------- | |
points : np.ndarray or torch.Tensor | |
A numpy array (or Tensor) of shape [N, 3] where each row is a 3D point (x, y, z). | |
colors : None, str, or np.ndarray | |
- If None, a default single color ('blue') is used. | |
- If a string, that color will be used for all points. | |
- If a numpy array, it should have shape [N, 3] or [N, 4], where each row | |
corresponds to the color of the matching point in `points`. | |
Values should be in the range [0, 1] if using floats. | |
title : str, optional | |
The title of the plot. Default is 'Point Cloud'. | |
point_size : float, optional | |
The size of the points in the scatter plot. Default is 1. | |
alpha : float, optional | |
The overall alpha (transparency) value for the points. Default is 1.0. | |
Examples | |
-------- | |
>>> import numpy as np | |
>>> # Generate random points | |
>>> pts = np.random.rand(1000, 3) | |
>>> # Generate random colors in [0,1] | |
>>> cols = np.random.rand(1000, 3) | |
>>> visualize_pointcloud(pts, colors=cols, title="Random Point Cloud with Colors") | |
""" | |
# Convert Torch tensors to NumPy arrays if needed | |
if isinstance(points, torch.Tensor): | |
points = points.detach().cpu().numpy() | |
if isinstance(colors, torch.Tensor): | |
colors = colors.detach().cpu().numpy() | |
# Flatten points if they are in a higher-dimensional array | |
if len(points.shape) > 2: | |
points = points.reshape(-1, 3) | |
if colors is not None and isinstance(colors, np.ndarray) and len(colors.shape) > 2: | |
colors = colors.reshape(-1, colors.shape[-1]) | |
# Validate shape of points | |
if points.shape[1] != 3: | |
raise ValueError("`points` array must have shape [N, 3].") | |
# Validate or set colors | |
if colors is None: | |
colors = 'blue' | |
elif isinstance(colors, np.ndarray): | |
colors = np.asarray(colors) | |
if colors.shape[0] != points.shape[0]: | |
raise ValueError( | |
"Colors array length must match the number of points." | |
) | |
if colors.shape[1] not in [3, 4]: | |
raise ValueError( | |
"Colors array must have shape [N, 3] or [N, 4]." | |
) | |
# Extract coordinates | |
x = points[:, 0] | |
y = points[:, 1] | |
z = points[:, 2] | |
# Create a 3D figure | |
fig = plt.figure(figsize=(8, 6)) | |
ax = fig.add_subplot(111, projection='3d') | |
# Scatter plot with specified or per-point colors | |
ax.scatter(x, y, z, c=colors, s=point_size, alpha=alpha) | |
# Set labels and title | |
ax.set_xlabel('X') | |
ax.set_ylabel('Y') | |
ax.set_zlabel('Z') | |
ax.set_title(title) | |
# Ensure all axes have the same scale | |
max_range = np.array([x.max() - x.min(), | |
y.max() - y.min(), | |
z.max() - z.min()]).max() / 2.0 | |
mid_x = (x.max() + x.min()) * 0.5 | |
mid_y = (y.max() + y.min()) * 0.5 | |
mid_z = (z.max() + z.min()) * 0.5 | |
ax.set_xlim(mid_x - max_range, mid_x + max_range) | |
ax.set_ylim(mid_y - max_range, mid_y + max_range) | |
ax.set_zlim(mid_z - max_range, mid_z + max_range) | |
# Adjust viewing angle for better visibility | |
ax.view_init(elev=20., azim=30) | |
plt.tight_layout() | |
plt.show() | |
def visualize_depth(depth_image, | |
file_name="rendered_depth.png", | |
visualization_dir="visualization", | |
size=(512, 288)): | |
""" | |
Visualize a depth map as a grayscale image. | |
Parameters | |
---------- | |
depth_image : np.ndarray | |
A 2D array of depth values. | |
visualization_dir : str | |
The directory to save the visualization image. | |
Returns | |
------- | |
PIL.Image | |
The visualization image. | |
""" | |
# Normalize the depth values for visualization | |
depth_min = depth_image.min() | |
depth_max = depth_image.max() | |
print(f"Depth min: {depth_min}, max: {depth_max}") | |
depth_image = np.clip(depth_image, 0, depth_max) | |
depth_vis = (depth_image - depth_min) / (depth_max - depth_min) | |
depth_vis = (depth_vis * 255).astype(np.uint8) | |
# Convert the depth image to a PIL image | |
depth_vis_img = Image.fromarray(depth_vis, mode='L') | |
depth_vis_img = depth_vis_img.resize(size, Image.NEAREST) | |
# Save the visualization image | |
depth_vis_img.save(os.path.join(visualization_dir, file_name)) | |
return depth_vis_img | |
class Surfel: | |
def __init__(self, position, normal, radius=1.0, color=None): | |
""" | |
position: (x, y, z) | |
normal: (nx, ny, nz) | |
radius: scalar | |
color: (r, g, b) or None | |
""" | |
self.position = position | |
self.normal = normal | |
self.radius = radius | |
self.color = color | |
def __repr__(self): | |
return (f"Surfel(position={self.position}, " | |
f"normal={self.normal}, radius={self.radius}, " | |
f"color={self.color})") | |
class Octree: | |
def __init__(self, points, indices=None, bbox=None, max_points=10): | |
self.points = points | |
if indices is None: | |
indices = np.arange(points.shape[0]) | |
self.indices = indices | |
if bbox is None: | |
min_bound = points.min(axis=0) | |
max_bound = points.max(axis=0) | |
center = (min_bound + max_bound) / 2 | |
half_size = np.max(max_bound - min_bound) / 2 | |
bbox = (center, half_size) | |
self.center, self.half_size = bbox | |
self.children = [] # 存储子节点 | |
self.max_points = max_points | |
if len(self.indices) > self.max_points: | |
self.subdivide() | |
def subdivide(self): | |
cx, cy, cz = self.center | |
hs = self.half_size / 2 | |
offsets = np.array([[dx, dy, dz] for dx in (-hs, hs) | |
for dy in (-hs, hs) | |
for dz in (-hs, hs)]) | |
for offset in offsets: | |
child_center = self.center + offset | |
child_indices = [] | |
for idx in self.indices: | |
p = self.points[idx] | |
if np.all(np.abs(p - child_center) <= hs): | |
child_indices.append(idx) | |
child_indices = np.array(child_indices) | |
if len(child_indices) > 0: | |
child = Octree(self.points, indices=child_indices, bbox=(child_center, hs), max_points=self.max_points) | |
self.children.append(child) | |
self.indices = None | |
def sphere_intersects_node(self, center, r): | |
diff = np.abs(center - self.center) | |
max_diff = diff - self.half_size | |
max_diff = np.maximum(max_diff, 0) | |
dist_sq = np.sum(max_diff**2) | |
return dist_sq <= r*r | |
def query_ball_point(self, point, r): | |
results = [] | |
if not self.sphere_intersects_node(point, r): | |
return results | |
if len(self.children) == 0: | |
if self.indices is not None: | |
for idx in self.indices: | |
if np.linalg.norm(self.points[idx] - point) <= r: | |
results.append(idx) | |
return results | |
else: | |
for child in self.children: | |
results.extend(child.query_ball_point(point, r)) | |
return results | |