Spaces:
Running
on
L4
Running
on
L4
File size: 45,488 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 |
from typing import Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
import kornia
from matplotlib import cm
from torchvision.io import write_video
from PIL import Image, ImageOps
import os
from typing import Union, Tuple, List
import math
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
DEFAULT_FOV_RAD = 0.9424777960769379 # 54 degrees by default
def get_default_intrinsics(
fov_rad=DEFAULT_FOV_RAD,
aspect_ratio=1.0,
):
if not isinstance(fov_rad, torch.Tensor):
fov_rad = torch.tensor(
[fov_rad] if isinstance(fov_rad, (int, float)) else fov_rad
)
if aspect_ratio >= 1.0: # W >= H
focal_x = 0.5 / torch.tan(0.5 * fov_rad)
focal_y = focal_x * aspect_ratio
else: # W < H
focal_y = 0.5 / torch.tan(0.5 * fov_rad)
focal_x = focal_y / aspect_ratio
intrinsics = focal_x.new_zeros((focal_x.shape[0], 3, 3))
intrinsics[:, torch.eye(3, device=focal_x.device, dtype=bool)] = torch.stack(
[focal_x, focal_y, torch.ones_like(focal_x)], dim=-1
)
intrinsics[:, :, -1] = torch.tensor(
[0.5, 0.5, 1.0], device=focal_x.device, dtype=focal_x.dtype
)
return intrinsics
def to_hom(X):
# get homogeneous coordinates of the input
X_hom = torch.cat([X, torch.ones_like(X[..., :1])], dim=-1)
return X_hom
def to_hom_pose(pose):
# get homogeneous coordinates of the input pose
if pose.shape[-2:] == (3, 4):
pose_hom = torch.eye(4, device=pose.device)[None].repeat(pose.shape[0], 1, 1)
pose_hom[:, :3, :] = pose
return pose_hom
return pose
def get_image_grid(img_h, img_w):
# add 0.5 is VERY important especially when your img_h and img_w
# is not very large (e.g., 72)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
y_range = torch.arange(img_h, dtype=torch.float32).add_(0.5)
x_range = torch.arange(img_w, dtype=torch.float32).add_(0.5)
Y, X = torch.meshgrid(y_range, x_range, indexing="ij") # [H,W]
xy_grid = torch.stack([X, Y], dim=-1).view(-1, 2) # [HW,2]
return to_hom(xy_grid) # [HW,3]
def img2cam(X, cam_intr):
return X @ cam_intr.inverse().transpose(-1, -2)
def cam2world(X, pose):
X_hom = to_hom(X)
pose_inv = torch.linalg.inv(to_hom_pose(pose))[..., :3, :4]
return X_hom @ pose_inv.transpose(-1, -2)
def get_center_and_ray(img_h, img_w, pose, intr): # [HW,2]
# given the intrinsic/extrinsic matrices, get the camera center and ray directions]
# assert(opt.camera.model=="perspective")
# compute center and ray
grid_img = get_image_grid(img_h, img_w) # [HW,3]
grid_3D_cam = img2cam(grid_img.to(intr.device), intr.float()) # [B,HW,3]
center_3D_cam = torch.zeros_like(grid_3D_cam) # [B,HW,3]
# transform from camera to world coordinates
grid_3D = cam2world(grid_3D_cam, pose) # [B,HW,3]
center_3D = cam2world(center_3D_cam, pose) # [B,HW,3]
ray = grid_3D - center_3D # [B,HW,3]
return center_3D, ray, grid_3D_cam
def get_plucker_coordinates(
extrinsics_src,
extrinsics,
intrinsics=None,
fov_rad=DEFAULT_FOV_RAD,
target_size=[72, 72],
):
# Support for batch dimension
has_batch_dim = len(extrinsics.shape) == 4
if has_batch_dim:
# [B, N, 4, 4] -> reshape to handle batch
batch_size, num_cameras = extrinsics.shape[0:2]
extrinsics_flat = extrinsics.reshape(-1, *extrinsics.shape[2:])
# Handle extrinsics_src appropriately
if len(extrinsics_src.shape) == 3: # [B, 4, 4]
extrinsics_src_expanded = extrinsics_src.unsqueeze(1).expand(-1, num_cameras, -1, -1)
extrinsics_src_flat = extrinsics_src_expanded.reshape(-1, *extrinsics_src.shape[1:])
else: # [4, 4] - single extrinsics_src for all batches
extrinsics_src_flat = extrinsics_src.expand(batch_size * num_cameras, -1, -1)
# Handle intrinsics for batch
if intrinsics is None:
intrinsics = get_default_intrinsics(fov_rad).to(extrinsics.device)
intrinsics = intrinsics.expand(batch_size * num_cameras, -1, -1)
elif len(intrinsics.shape) == 3: # [N, 3, 3]
if intrinsics.shape[0] == num_cameras:
intrinsics = intrinsics.expand(batch_size, -1, -1, -1).reshape(-1, *intrinsics.shape[1:])
else:
intrinsics = intrinsics.expand(batch_size * num_cameras, -1, -1)
elif len(intrinsics.shape) == 4: # [B, N, 3, 3]
intrinsics = intrinsics.reshape(-1, *intrinsics.shape[2:])
else:
# Original behavior for non-batch input
extrinsics_flat = extrinsics
extrinsics_src_flat = extrinsics_src
if intrinsics is None:
intrinsics = get_default_intrinsics(fov_rad).to(extrinsics.device)
# Process intrinsics normalization
if not (
torch.all(intrinsics[:, :2, -1] >= 0)
and torch.all(intrinsics[:, :2, -1] <= 1)
):
intrinsics[:, :2] /= intrinsics.new_tensor(target_size).view(1, -1, 1) * 8
# Ensure normalized intrinsics
assert (
torch.all(intrinsics[:, :2, -1] >= 0)
and torch.all(intrinsics[:, :2, -1] <= 1)
), "Intrinsics should be expressed in resolution-independent normalized image coordinates."
c2w_src = torch.linalg.inv(extrinsics_src_flat)
# transform coordinates from the source camera's coordinate system to the coordinate system of the respective camera
extrinsics_rel = torch.einsum(
"vnm,vmp->vnp", extrinsics_flat, c2w_src
)
intrinsics[:, :2] *= extrinsics_flat.new_tensor(
[
target_size[1], # w
target_size[0], # h
]
).view(1, -1, 1)
centers, rays, grid_cam = get_center_and_ray(
img_h=target_size[0],
img_w=target_size[1],
pose=extrinsics_rel[:, :3, :],
intr=intrinsics,
)
rays = torch.nn.functional.normalize(rays, dim=-1)
plucker = torch.cat((rays, torch.cross(centers, rays, dim=-1)), dim=-1)
plucker = plucker.permute(0, 2, 1).reshape(plucker.shape[0], -1, *target_size)
# Reshape back to batch dimension if needed
if has_batch_dim:
plucker = plucker.reshape(batch_size, num_cameras, *plucker.shape[1:])
return plucker
def get_value_dict(
curr_imgs,
curr_imgs_clip,
curr_input_frame_indices,
curr_c2ws,
curr_Ks,
curr_input_camera_indices,
all_c2ws,
camera_scale,
):
assert sorted(curr_input_camera_indices) == sorted(
range(len(curr_input_camera_indices))
)
H, W, T, F = curr_imgs.shape[-2], curr_imgs.shape[-1], len(curr_imgs), 8
value_dict = {}
value_dict["cond_frames_without_noise"] = curr_imgs_clip[curr_input_frame_indices]
value_dict["cond_frames"] = curr_imgs + 0.0 * torch.randn_like(curr_imgs)
value_dict["cond_frames_mask"] = torch.zeros(T, dtype=torch.bool)
value_dict["cond_frames_mask"][curr_input_frame_indices] = True
value_dict["cond_aug"] = 0.0
if curr_c2ws.shape[-1] == 3:
c2w = to_hom_pose(curr_c2ws.float())
else:
c2w = curr_c2ws
w2c = torch.linalg.inv(c2w)
# camera centering
ref_c2ws = all_c2ws
camera_dist_2med = torch.norm(
ref_c2ws[:, :3, 3] - ref_c2ws[:, :3, 3].median(0, keepdim=True).values,
dim=-1,
)
valid_mask = camera_dist_2med <= torch.clamp(
torch.quantile(camera_dist_2med, 0.97) * 10,
max=1e6,
)
c2w[:, :3, 3] -= ref_c2ws[valid_mask, :3, 3].mean(0, keepdim=True)
w2c = torch.linalg.inv(c2w)
# camera normalization
camera_dists = c2w[:, :3, 3].clone()
translation_scaling_factor = (
camera_scale
if torch.isclose(
torch.norm(camera_dists[0]),
torch.zeros(1),
atol=1e-5,
).any()
else (camera_scale / torch.norm(camera_dists[0]))
)
w2c[:, :3, 3] *= translation_scaling_factor
c2w[:, :3, 3] *= translation_scaling_factor
value_dict["plucker_coordinate"] = get_plucker_coordinates(
extrinsics_src=w2c[0],
extrinsics=w2c,
intrinsics=curr_Ks.float().clone(),
target_size=(H // F, W // F),
)
value_dict["c2w"] = c2w
value_dict["K"] = curr_Ks
value_dict["camera_mask"] = torch.zeros(T, dtype=torch.bool)
value_dict["camera_mask"][curr_input_camera_indices] = True
return value_dict
def parse_meta_data(file_path, image_height=288, image_width=512):
with open(file_path, 'r') as file:
lines = file.readlines()
# First line is the video URL
video_url = lines[0].strip()
line = lines[1]
data = line.strip().split()
# Construct the camera intrinsics matrix K
focal_length_x = float(data[1])
focal_length_y = float(data[2])
principal_point_x = float(data[3])
principal_point_y = float(data[4])
original_K = [
[focal_length_x, 0, principal_point_x],
[0, focal_length_y, principal_point_y],
[0, 0, 1]
]
K = [
[focal_length_x * image_width, 0, principal_point_x * image_width],
[0, focal_length_y * image_height, principal_point_y * image_height],
[0, 0, 1]
]
# Initialize a list to store frame data
timestamp_to_c2ws = {}
timestamps = []
# Process each frame line
for line in lines[1:]:
data = line.strip().split()
timestamp = int(data[0])
R_t = [float(x) for x in data[7:]]
P = [
R_t[0:4],
R_t[4:8],
R_t[8:12],
[0, 0, 0, 1]
]
timestamp_to_c2ws[timestamp] = np.array(P)
timestamps.append(timestamp)
return timestamps, np.array(K), timestamp_to_c2ws, original_K
def get_wh_with_fixed_shortest_side(w, h, size):
# size is smaller or equal to zero, we return original w h
if size is None or size <= 0:
return w, h
if w < h:
new_w = size
new_h = int(size * h / w)
else:
new_h = size
new_w = int(size * w / h)
return new_w, new_h
def get_resizing_factor(
target_shape: Tuple[int, int], # H, W
current_shape: Tuple[int, int], # H, W
cover_target: bool = True,
# If True, the output shape will fully cover the target shape.
# If No, the target shape will fully cover the output shape.
) -> float:
r_bound = target_shape[1] / target_shape[0]
aspect_r = current_shape[1] / current_shape[0]
if r_bound >= 1.0:
if cover_target:
if aspect_r >= r_bound:
factor = min(target_shape) / min(current_shape)
elif aspect_r < 1.0:
factor = max(target_shape) / min(current_shape)
else:
factor = max(target_shape) / max(current_shape)
else:
if aspect_r >= r_bound:
factor = max(target_shape) / max(current_shape)
elif aspect_r < 1.0:
factor = min(target_shape) / max(current_shape)
else:
factor = min(target_shape) / min(current_shape)
else:
if cover_target:
if aspect_r <= r_bound:
factor = min(target_shape) / min(current_shape)
elif aspect_r > 1.0:
factor = max(target_shape) / min(current_shape)
else:
factor = max(target_shape) / max(current_shape)
else:
if aspect_r <= r_bound:
factor = max(target_shape) / max(current_shape)
elif aspect_r > 1.0:
factor = min(target_shape) / max(current_shape)
else:
factor = min(target_shape) / min(current_shape)
return factor
def transform_img_and_K(
image: torch.Tensor,
size: Union[int, Tuple[int, int]],
scale: float = 1.0,
center: Tuple[float, float] = (0.5, 0.5),
K: Union[torch.Tensor, np.ndarray, None] = None,
size_stride: int = 1,
mode: str = "crop",
):
assert mode in [
"crop",
"pad",
"stretch",
], f"mode should be one of ['crop', 'pad', 'stretch'], got {mode}"
h, w = image.shape[-2:]
if isinstance(size, (tuple, list)):
# => if size is a tuple or list, we first rescale to fully cover the `size`
# area and then crop the `size` area from the rescale image
W, H = size
else:
# => if size is int, we rescale the image to fit the shortest side to size
# => if size is None, no rescaling is applied
W, H = get_wh_with_fixed_shortest_side(w, h, size)
W, H = (
math.floor(W / size_stride + 0.5) * size_stride,
math.floor(H / size_stride + 0.5) * size_stride,
)
if mode == "stretch":
rh, rw = H, W
else:
rfs = get_resizing_factor(
(H, W),
(h, w),
cover_target=mode != "pad",
)
(rh, rw) = [int(np.ceil(rfs * s)) for s in (h, w)]
rh, rw = int(rh / scale), int(rw / scale)
image = torch.nn.functional.interpolate(
image, (rh, rw), mode="area", antialias=False
)
cy_center = int(center[1] * image.shape[-2])
cx_center = int(center[0] * image.shape[-1])
if mode != "pad":
ct = max(0, cy_center - H // 2)
cl = max(0, cx_center - W // 2)
ct = min(ct, image.shape[-2] - H)
cl = min(cl, image.shape[-1] - W)
image = TF.crop(image, top=ct, left=cl, height=H, width=W)
pl, pt = 0, 0
else:
pt = max(0, H // 2 - cy_center)
pl = max(0, W // 2 - cx_center)
pb = max(0, H - pt - image.shape[-2])
pr = max(0, W - pl - image.shape[-1])
image = TF.pad(
image,
[pl, pt, pr, pb],
)
cl, ct = 0, 0
if K is not None:
K = K.clone()
# K[:, :2, 2] += K.new_tensor([pl, pt])
if torch.all(K[:, :2, -1] >= 0) and torch.all(K[:, :2, -1] <= 1):
K[:, :2] *= K.new_tensor([rw, rh])[None, :, None] # normalized K
else:
K[:, :2] *= K.new_tensor([rw / w, rh / h])[None, :, None] # unnormalized K
K[:, :2, 2] += K.new_tensor([pl - cl, pt - ct])
return image, K
def load_img_and_K(
image_path_or_size: Union[str, torch.Size],
size: Optional[Union[int, Tuple[int, int]]],
scale: float = 1.0,
center: Tuple[float, float] = (0.5, 0.5),
K: Union[torch.Tensor, np.ndarray, None] = None,
size_stride: int = 1,
center_crop: bool = False,
image_as_tensor: bool = True,
context_rgb: Union[np.ndarray, None] = None,
device: str = "cuda",
):
if isinstance(image_path_or_size, torch.Size):
image = Image.new("RGBA", image_path_or_size[::-1])
else:
image = Image.open(image_path_or_size).convert("RGBA")
w, h = image.size
if size is None:
size = (w, h)
image = np.array(image).astype(np.float32) / 255
if image.shape[-1] == 4:
rgb, alpha = image[:, :, :3], image[:, :, 3:]
if context_rgb is not None:
image = rgb * alpha + context_rgb * (1 - alpha)
else:
image = rgb * alpha + (1 - alpha)
image = image.transpose(2, 0, 1)
image = torch.from_numpy(image).to(dtype=torch.float32)
image = image.unsqueeze(0)
if isinstance(size, (tuple, list)):
# => if size is a tuple or list, we first rescale to fully cover the `size`
# area and then crop the `size` area from the rescale image
W, H = size
else:
# => if size is int, we rescale the image to fit the shortest side to size
# => if size is None, no rescaling is applied
W, H = get_wh_with_fixed_shortest_side(w, h, size)
W, H = (
math.floor(W / size_stride + 0.5) * size_stride,
math.floor(H / size_stride + 0.5) * size_stride,
)
rfs = get_resizing_factor((math.floor(H * scale), math.floor(W * scale)), (h, w))
resize_size = rh, rw = [int(np.ceil(rfs * s)) for s in (h, w)]
image = torch.nn.functional.interpolate(
image, resize_size, mode="area", antialias=False
)
if scale < 1.0:
pw = math.ceil((W - resize_size[1]) * 0.5)
ph = math.ceil((H - resize_size[0]) * 0.5)
image = F.pad(image, (pw, pw, ph, ph), "constant", 1.0)
cy_center = int(center[1] * image.shape[-2])
cx_center = int(center[0] * image.shape[-1])
if center_crop:
side = min(H, W)
ct = max(0, cy_center - side // 2)
cl = max(0, cx_center - side // 2)
ct = min(ct, image.shape[-2] - side)
cl = min(cl, image.shape[-1] - side)
image = TF.crop(image, top=ct, left=cl, height=side, width=side)
else:
ct = max(0, cy_center - H // 2)
cl = max(0, cx_center - W // 2)
ct = min(ct, image.shape[-2] - H)
cl = min(cl, image.shape[-1] - W)
image = TF.crop(image, top=ct, left=cl, height=H, width=W)
if K is not None:
K = K.clone()
if torch.all(K[:2, -1] >= 0) and torch.all(K[:2, -1] <= 1):
K[:2] *= K.new_tensor([rw, rh])[:, None] # normalized K
else:
K[:2] *= K.new_tensor([rw / w, rh / h])[:, None] # unnormalized K
K[:2, 2] -= K.new_tensor([cl, ct])
if image_as_tensor:
# tensor of shape (1, 3, H, W) with values ranging from (-1, 1)
image = image.to(device) * 2.0 - 1.0
else:
# PIL Image with values ranging from (0, 255)
image = image.permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).astype(np.uint8))
return image, K
def geodesic_distance(extrinsic1: Union[np.ndarray, torch.Tensor],
extrinsic2: Union[np.ndarray, torch.Tensor],
weight_translation: float = 0.01,):
"""
Computes the geodesic distance between two camera poses in SE(3).
Parameters:
extrinsic1 (Union[np.ndarray, torch.Tensor]): 4x4 extrinsic matrix of the first pose.
extrinsic2 (Union[np.ndarray, torch.Tensor]): 4x4 extrinsic matrix of the second pose.
Returns:
Union[float, torch.Tensor]: Geodesic distance between the two poses.
"""
if torch.is_tensor(extrinsic1):
# Extract the rotation and translation components
R1 = extrinsic1[:3, :3]
t1 = extrinsic1[:3, 3]
R2 = extrinsic2[:3, :3]
t2 = extrinsic2[:3, 3]
# Compute the translation distance (Euclidean distance)
translation_distance = torch.norm(t1 - t2)
# Compute the relative rotation matrix
R_relative = torch.matmul(R1.T, R2)
# Compute the angular distance from the trace of the relative rotation matrix
trace_value = torch.trace(R_relative)
# Clamp the trace value to avoid numerical issues
trace_value = torch.clamp(trace_value, -1.0, 3.0)
angular_distance = torch.acos((trace_value - 1) / 2)
else:
# Extract the rotation and translation components
R1 = extrinsic1[:3, :3]
t1 = extrinsic1[:3, 3]
R2 = extrinsic2[:3, :3]
t2 = extrinsic2[:3, 3]
# Compute the translation distance (Euclidean distance)
translation_distance = np.linalg.norm(t1 - t2)
# Compute the relative rotation matrix
R_relative = np.dot(R1.T, R2)
# Compute the angular distance from the trace of the relative rotation matrix
trace_value = np.trace(R_relative)
# Clamp the trace value to avoid numerical issues
trace_value = np.clip(trace_value, -1.0, 3.0)
angular_distance = np.arccos((trace_value - 1) / 2)
# Combine the two distances
geodesic_dist = translation_distance*weight_translation + angular_distance
return geodesic_dist
def inverse_geodesic_distance(extrinsic1,
extrinsic2,
weight_translation=0.01):
"""
Computes the inverse geodesic distance between two camera poses in SE(3).
Parameters:
extrinsic1 (np.ndarray): 4x4 extrinsic matrix of the first pose.
extrinsic2 (np.ndarray): 4x4 extrinsic matrix of the second pose.
Returns:
float: Inverse geodesic distance between the two poses.
"""
# Compute the geodesic distance
geodesic_dist = geodesic_distance(extrinsic1, extrinsic2, weight_translation)
# Compute the inverse geodesic distance
inverse_geodesic_dist = 1.0 / (geodesic_dist + 1e-6)
return inverse_geodesic_dist
def average_camera_pose(camera_poses):
"""
Compute a better average of camera poses in SE(3).
Args:
camera_poses: List or array of camera poses, each a 4x4 matrix
Returns:
Average camera pose as a 4x4 matrix
"""
# Extract rotation and translation components
rotations = camera_poses[:, :3, :3].detach().cpu().numpy()
translations = camera_poses[:, :3, 3].detach().cpu().numpy()
# Average translation with simple mean
avg_translation = np.mean(translations, axis=0)
# Convert rotations to quaternions for better averaging
import scipy.spatial.transform as transform
quats = [transform.Rotation.from_matrix(R).as_quat() for R in rotations]
# Ensure quaternions are in the same hemisphere to avoid issues with averaging
for i in range(1, len(quats)):
if np.dot(quats[0], quats[i]) < 0:
quats[i] = -quats[i]
# Average the quaternions and convert back to rotation matrix
avg_quat = np.mean(quats, axis=0)
avg_quat = avg_quat / np.linalg.norm(avg_quat) # Normalize
avg_rotation = transform.Rotation.from_quat(avg_quat).as_matrix()
# Construct the average pose
avg_pose = np.eye(4)
avg_pose[:3, :3] = avg_rotation
avg_pose[:3, 3] = avg_translation
return avg_pose
def encode_image(
image,
image_encoder,
device,
dtype,
) -> torch.Tensor:
image = image.to(device=device, dtype=dtype)
image_embeddings = image_encoder(image)
return image_embeddings
def encode_vae_image(
image,
vae,
device,
dtype,
):
image = image.to(device=device, dtype=dtype)
image_latents = vae.encode(image, 1)
return image_latents
def do_sample(
model,
ae,
denoiser,
sampler,
c,
uc,
c2w,
K,
cond_frames_mask,
H=576,
W=768,
C=4,
F=8,
T=8,
cfg=2.0,
decoding_t=1,
verbose=True,
global_pbar=None,
return_latents=False,
device: str = "cuda",
**_,
):
num_samples = [1, T]
with torch.inference_mode(), torch.autocast("cuda"):
additional_model_inputs = {"num_frames": T}
additional_sampler_inputs = {
"c2w": c2w.to("cuda"),
"K": K.to("cuda"),
"input_frame_mask": cond_frames_mask.to("cuda"),
}
if global_pbar is not None:
additional_sampler_inputs["global_pbar"] = global_pbar
shape = (math.prod(num_samples), C, H // F, W // F)
randn = torch.randn(shape).to(device)
samples_z = sampler(
lambda input, sigma, c: denoiser(
model,
input,
sigma,
c,
**additional_model_inputs,
),
randn,
scale=cfg,
cond=c,
uc=uc,
verbose=verbose,
**additional_sampler_inputs,
)
if samples_z is None:
return
samples = ae.decode(samples_z, decoding_t)
if return_latents:
return samples, samples_z
return samples
def decode_output(
samples,
T,
indices=None,
):
# decode model output into dict if it is not
if isinstance(samples, dict):
# model with postprocessor and outputs dict q``
for sample, value in samples.items():
if isinstance(value, torch.Tensor):
value = value.detach().cpu()
elif isinstance(value, np.ndarray):
value = torch.from_numpy(value)
else:
value = torch.tensor(value)
if indices is not None and value.shape[0] == T:
value = value[indices]
samples[sample] = value
else:
# model without postprocessor and outputs tensor (rgb)
samples = samples.detach().cpu()
if indices is not None and samples.shape[0] == T:
samples = samples[indices]
samples = {"samples-rgb/image": samples}
return samples
def select_frames(timestamps, min_num_frames=2, skip_frame=10, random_start=False):
"""
Select frames from a video sequence based on defined criteria.
Args:
timestamps: List of timestamps for the frames
min_num_frames: Minimum number of frames required
skip_frame: Number of frames to skip between selections
random_start: If True, start from a random frame
Returns:
tuple: (selected_frame_indices, selected_frame_timestamps) or (None, None) if criteria not met
"""
num_frames = len(timestamps)
if num_frames < min_num_frames:
print(f"[Worker PID={os.getpid()}] Episode has less than {min_num_frames} frames")
return None, None
# Decide on start/end frames
if num_frames < 2:
print(f"[Worker PID={os.getpid()}] Episode has less than 2 frames")
return None, None
elif num_frames < skip_frame:
cur_skip_frame = num_frames - 1
else:
cur_skip_frame = skip_frame
if random_start:
start_frame = np.random.randint(0, skip_frame)
else:
start_frame = 0
# Gather frame indices
selected_frame_indices = list(range(start_frame, num_frames, cur_skip_frame))
selected_frame_timestamps = [timestamps[i] for i in selected_frame_indices]
return selected_frame_indices, selected_frame_timestamps
def tensor2im(input_image, imtype=np.uint8):
if not isinstance(input_image, np.ndarray):
if isinstance(input_image, torch.Tensor): # get the data from a variable
image_tensor = input_image.data
else:
return input_image
image_numpy = image_tensor[0].clamp(0.0, 1.0).cpu().float().numpy() # convert it into a numpy array
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0 # post-processing: tranpose and scaling
else: # if it is a numpy array, do nothing
image_numpy = input_image
return image_numpy.astype(imtype)
class LatentStorer:
def __init__(self):
self.latent = None
def __call__(self, i, t, latent):
self.latent = latent
def sobel_filter(disp, mode="sobel", beta=10.0):
sobel_grad = kornia.filters.spatial_gradient(disp, mode=mode, normalized=False)
sobel_mag = torch.sqrt(sobel_grad[:, :, 0, Ellipsis] ** 2 + sobel_grad[:, :, 1, Ellipsis] ** 2)
alpha = torch.exp(-1.0 * beta * sobel_mag).detach()
return alpha
def apply_colormap(image, cmap="viridis"):
colormap = cm.get_cmap(cmap)
colormap = torch.tensor(colormap.colors).to(image.device)
image_long = (image * 255).long()
image_long_min = torch.min(image_long)
image_long_max = torch.max(image_long)
assert image_long_min >= 0, f"the min value is {image_long_min}"
assert image_long_max <= 255, f"the max value is {image_long_max}"
return colormap[image_long[..., 0]]
def apply_depth_colormap(
depth,
near_plane=None,
far_plane=None,
cmap="viridis",
):
near_plane = near_plane or float(torch.min(depth))
far_plane = far_plane or float(torch.max(depth))
depth = (depth - near_plane) / (far_plane - near_plane + 1e-10)
depth = torch.clip(depth, 0, 1)
colored_image = apply_colormap(depth, cmap=cmap)
return colored_image
def save_video(video, path, fps=10):
video = video.permute(0, 2, 3, 1)
video_codec = "libx264"
video_options = {
"crf": "23", # Constant Rate Factor (lower value = higher quality, 18 is a good balance)
"preset": "slow",
}
write_video(str(path), video, fps=fps, video_codec=video_codec, options=video_options)
def visualize_camera_poses(camera_poses, axis_length=0.1):
"""
Visualizes a set of camera poses in 3D using Matplotlib.
Parameters
----------
camera_poses : np.ndarray
An array of shape (N, 4, 4) containing N camera poses.
Each pose is a 4x4 transformation matrix.
axis_length : float
Length of the camera axes to draw.
"""
if isinstance(camera_poses, torch.Tensor):
camera_poses = camera_poses.detach().cpu().numpy()
# Create a 3D figure
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Iterate over all camera poses
for i in range(camera_poses.shape[0]):
# Extract rotation (R) and translation (t)
R = camera_poses[i][:3, :3]
t = camera_poses[i][:3, 3]
# Plot the camera center
ax.scatter(t[0], t[1], t[2], c='k', marker='o', s=20)
# Define the end-points of each local axis
x_axis_end = t + R[:, 0] * axis_length
y_axis_end = t + R[:, 1] * axis_length
z_axis_end = t + R[:, 2] * axis_length
# Draw the axes as lines
ax.plot([t[0], x_axis_end[0]], [t[1], x_axis_end[1]],
[t[2], x_axis_end[2]], color='r') # X-axis (red)
ax.plot([t[0], y_axis_end[0]], [t[1], y_axis_end[1]],
[t[2], y_axis_end[2]], color='g') # Y-axis (green)
ax.plot([t[0], z_axis_end[0]], [t[1], z_axis_end[1]],
[t[2], z_axis_end[2]], color='b') # Z-axis (blue)
# Make axes have equal scale
set_axes_equal(ax)
ax.set_title("Camera Poses Visualization")
ax.set_xlabel("X")
ax.set_ylabel("Y")
ax.set_zlabel("Z")
plt.show()
def set_axes_equal(ax):
"""
Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.
This is a workaround to Matplotlib's set_aspect('equal') which is not supported in 3D.
"""
x_limits = ax.get_xlim3d()
y_limits = ax.get_ylim3d()
z_limits = ax.get_zlim3d()
x_range = x_limits[1] - x_limits[0]
y_range = y_limits[1] - y_limits[0]
z_range = z_limits[1] - z_limits[0]
max_range = max(x_range, y_range, z_range)
x_middle = np.mean(x_limits)
y_middle = np.mean(y_limits)
z_middle = np.mean(z_limits)
ax.set_xlim3d([x_middle - 0.5 * max_range, x_middle + 0.5 * max_range])
ax.set_ylim3d([y_middle - 0.5 * max_range, y_middle + 0.5 * max_range])
ax.set_zlim3d([z_middle - 0.5 * max_range, z_middle + 0.5 * max_range])
def tensor_to_pil(image):
if isinstance(image, torch.Tensor):
if image.dim() == 4:
image = image.squeeze(0)
image = image.permute(1, 2, 0).detach().cpu().numpy()
# Detect the range of the input tensor
if image.min() < -0.1: # If we have negative values, assume [-1, 1] range
image = (image + 1) / 2.0 # Convert from [-1, 1] to [0, 1]
# Otherwise, assume it's already in [0, 1] range
image = (image * 255)
image = np.clip(image, 0, 255)
image = image.astype(np.uint8)
return Image.fromarray(image)
def center_crop_pil_image(input_image, target_width=1024, target_height=576):
w, h = input_image.size
h_ratio = h / target_height
w_ratio = w / target_width
if h_ratio > w_ratio:
h = int(h / w_ratio)
if h < target_height:
h = target_height
input_image = input_image.resize((target_width, h), Image.Resampling.LANCZOS)
else:
w = int(w / h_ratio)
if w < target_width:
w = target_width
input_image = input_image.resize((w, target_height), Image.Resampling.LANCZOS)
return ImageOps.fit(input_image, (target_width, target_height), Image.BICUBIC)
def resize_pil_image(img, long_edge_size):
S = max(img.size)
if S > long_edge_size:
interp = PIL.Image.LANCZOS
elif S <= long_edge_size:
interp = PIL.Image.BICUBIC
new_size = tuple(int(round(x*long_edge_size/S)) for x in img.size)
return img.resize(new_size, interp)
def visualize_surfels(
surfels,
draw_normals=False,
normal_scale=20,
disk_resolution=16,
disk_alpha=0.5
):
"""
Visualize surfels as 2D disks oriented by their normals in 3D using matplotlib.
Args:
surfels (list of Surfel): Each Surfel has at least:
- position: (x, y, z)
- normal: (nx, ny, nz)
- radius: scalar
- color: (R, G, B) in [0..255] (optional)
draw_normals (bool): If True, draws the surfel normals as quiver arrows.
normal_scale (float): Scale factor for the normal arrows.
disk_resolution (int): Number of segments to approximate each disk.
disk_alpha (float): Alpha (transparency) for the filled disks.
"""
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Prepare arrays for optional quiver (if draw_normals=True)
positions = []
normals = []
# We'll accumulate 3D polygons in a list for Poly3DCollection
polygons = []
polygon_colors = []
for s in surfels:
# --- Extract surfel data ---
position = s.position
normal = s.normal
radius = s.radius
if isinstance(position, torch.Tensor):
x, y, z = position.detach().cpu().numpy()
nx, ny, nz = normal.detach().cpu().numpy()
radius = radius.detach().cpu().numpy()
else:
x, y, z = position
nx, ny, nz = normal
radius = radius
# Convert color from [0..255] to [0..1], or use default
if s.color is None:
color = (0.2, 0.6, 1.0) # Light blue
else:
r, g, b = s.color
color = (r/255.0, g/255.0, b/255.0)
# --- Build local coordinate axes for the disk ---
normal = np.array([nx, ny, nz], dtype=float)
norm_len = np.linalg.norm(normal)
# Skip degenerate normals to avoid nan
if norm_len < 1e-12:
continue
normal /= norm_len
# Pick an 'up' vector that is not too close to the normal
# so we can build a tangent plane
up = np.array([0, 0, 1], dtype=float)
if abs(normal.dot(up)) > 0.9:
up = np.array([0, 1, 0], dtype=float)
# xAxis = normal x up
xAxis = np.cross(normal, up)
xAxis /= np.linalg.norm(xAxis)
# yAxis = normal x xAxis
yAxis = np.cross(normal, xAxis)
yAxis /= np.linalg.norm(yAxis)
# --- Create a circle of 'disk_resolution' segments in local 2D coords ---
angles = np.linspace(0, 2*np.pi, disk_resolution, endpoint=False)
circle_points_3d = []
for theta in angles:
# local 2D circle: (r*cosθ, r*sinθ)
px = radius * np.cos(theta)
py = radius * np.sin(theta)
# transform to 3D world space: position + px*xAxis + py*yAxis
world_pt = np.array([x, y, z]) + px * xAxis + py * yAxis
circle_points_3d.append(world_pt)
# We have a list of [x, y, z]. For a filled polygon, Poly3DCollection
# wants them as a single Nx3 array.
circle_points_3d = np.array(circle_points_3d)
polygons.append(circle_points_3d)
polygon_colors.append(color)
# Collect positions and normals for quiver (if used)
positions.append([x, y, z])
normals.append(normal)
# --- Draw the disks as polygons ---
poly_collection = Poly3DCollection(
polygons,
facecolors=polygon_colors,
edgecolors='k', # black edge
linewidths=0.5,
alpha=disk_alpha
)
ax.add_collection3d(poly_collection)
# --- Optionally draw normal vectors (quiver) ---
if draw_normals and len(positions) > 0:
X = [p[0] for p in positions]
Y = [p[1] for p in positions]
Z = [p[2] for p in positions]
Nx = [n[0] for n in normals]
Ny = [n[1] for n in normals]
Nz = [n[2] for n in normals]
# Note: If your scene is large, you may want to increase `length`.
ax.quiver(
X, Y, Z,
Nx, Ny, Nz,
length=normal_scale,
color='red',
normalize=True
)
# --- Axis labels, aspect ratio, etc. ---
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
try:
ax.set_box_aspect((1, 1, 1))
except AttributeError:
pass # older MPL versions
plt.title("Surfels as Disks (Oriented by Normal)")
plt.show()
def visualize_pointcloud(
points,
colors=None,
title='Point Cloud',
point_size=1,
alpha=1.0
):
"""
Visualize a 3D point cloud using Matplotlib, with an option to provide
per-point RGB or RGBA colors, ensuring equal scaling for the x, y, and z axes.
Parameters
----------
points : np.ndarray or torch.Tensor
A numpy array (or Tensor) of shape [N, 3] where each row is a 3D point (x, y, z).
colors : None, str, or np.ndarray
- If None, a default single color ('blue') is used.
- If a string, that color will be used for all points.
- If a numpy array, it should have shape [N, 3] or [N, 4], where each row
corresponds to the color of the matching point in `points`.
Values should be in the range [0, 1] if using floats.
title : str, optional
The title of the plot. Default is 'Point Cloud'.
point_size : float, optional
The size of the points in the scatter plot. Default is 1.
alpha : float, optional
The overall alpha (transparency) value for the points. Default is 1.0.
Examples
--------
>>> import numpy as np
>>> # Generate random points
>>> pts = np.random.rand(1000, 3)
>>> # Generate random colors in [0,1]
>>> cols = np.random.rand(1000, 3)
>>> visualize_pointcloud(pts, colors=cols, title="Random Point Cloud with Colors")
"""
# Convert Torch tensors to NumPy arrays if needed
if isinstance(points, torch.Tensor):
points = points.detach().cpu().numpy()
if isinstance(colors, torch.Tensor):
colors = colors.detach().cpu().numpy()
# Flatten points if they are in a higher-dimensional array
if len(points.shape) > 2:
points = points.reshape(-1, 3)
if colors is not None and isinstance(colors, np.ndarray) and len(colors.shape) > 2:
colors = colors.reshape(-1, colors.shape[-1])
# Validate shape of points
if points.shape[1] != 3:
raise ValueError("`points` array must have shape [N, 3].")
# Validate or set colors
if colors is None:
colors = 'blue'
elif isinstance(colors, np.ndarray):
colors = np.asarray(colors)
if colors.shape[0] != points.shape[0]:
raise ValueError(
"Colors array length must match the number of points."
)
if colors.shape[1] not in [3, 4]:
raise ValueError(
"Colors array must have shape [N, 3] or [N, 4]."
)
# Extract coordinates
x = points[:, 0]
y = points[:, 1]
z = points[:, 2]
# Create a 3D figure
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
# Scatter plot with specified or per-point colors
ax.scatter(x, y, z, c=colors, s=point_size, alpha=alpha)
# Set labels and title
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title(title)
# Ensure all axes have the same scale
max_range = np.array([x.max() - x.min(),
y.max() - y.min(),
z.max() - z.min()]).max() / 2.0
mid_x = (x.max() + x.min()) * 0.5
mid_y = (y.max() + y.min()) * 0.5
mid_z = (z.max() + z.min()) * 0.5
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)
# Adjust viewing angle for better visibility
ax.view_init(elev=20., azim=30)
plt.tight_layout()
plt.show()
def visualize_depth(depth_image,
file_name="rendered_depth.png",
visualization_dir="visualization",
size=(512, 288)):
"""
Visualize a depth map as a grayscale image.
Parameters
----------
depth_image : np.ndarray
A 2D array of depth values.
visualization_dir : str
The directory to save the visualization image.
Returns
-------
PIL.Image
The visualization image.
"""
# Normalize the depth values for visualization
depth_min = depth_image.min()
depth_max = depth_image.max()
print(f"Depth min: {depth_min}, max: {depth_max}")
depth_image = np.clip(depth_image, 0, depth_max)
depth_vis = (depth_image - depth_min) / (depth_max - depth_min)
depth_vis = (depth_vis * 255).astype(np.uint8)
# Convert the depth image to a PIL image
depth_vis_img = Image.fromarray(depth_vis, mode='L')
depth_vis_img = depth_vis_img.resize(size, Image.NEAREST)
# Save the visualization image
depth_vis_img.save(os.path.join(visualization_dir, file_name))
return depth_vis_img
class Surfel:
def __init__(self, position, normal, radius=1.0, color=None):
"""
position: (x, y, z)
normal: (nx, ny, nz)
radius: scalar
color: (r, g, b) or None
"""
self.position = position
self.normal = normal
self.radius = radius
self.color = color
def __repr__(self):
return (f"Surfel(position={self.position}, "
f"normal={self.normal}, radius={self.radius}, "
f"color={self.color})")
class Octree:
def __init__(self, points, indices=None, bbox=None, max_points=10):
self.points = points
if indices is None:
indices = np.arange(points.shape[0])
self.indices = indices
if bbox is None:
min_bound = points.min(axis=0)
max_bound = points.max(axis=0)
center = (min_bound + max_bound) / 2
half_size = np.max(max_bound - min_bound) / 2
bbox = (center, half_size)
self.center, self.half_size = bbox
self.children = [] # 存储子节点
self.max_points = max_points
if len(self.indices) > self.max_points:
self.subdivide()
def subdivide(self):
cx, cy, cz = self.center
hs = self.half_size / 2
offsets = np.array([[dx, dy, dz] for dx in (-hs, hs)
for dy in (-hs, hs)
for dz in (-hs, hs)])
for offset in offsets:
child_center = self.center + offset
child_indices = []
for idx in self.indices:
p = self.points[idx]
if np.all(np.abs(p - child_center) <= hs):
child_indices.append(idx)
child_indices = np.array(child_indices)
if len(child_indices) > 0:
child = Octree(self.points, indices=child_indices, bbox=(child_center, hs), max_points=self.max_points)
self.children.append(child)
self.indices = None
def sphere_intersects_node(self, center, r):
diff = np.abs(center - self.center)
max_diff = diff - self.half_size
max_diff = np.maximum(max_diff, 0)
dist_sq = np.sum(max_diff**2)
return dist_sq <= r*r
def query_ball_point(self, point, r):
results = []
if not self.sphere_intersects_node(point, r):
return results
if len(self.children) == 0:
if self.indices is not None:
for idx in self.indices:
if np.linalg.norm(self.points[idx] - point) <= r:
results.append(idx)
return results
else:
for child in self.children:
results.extend(child.query_ball_point(point, r))
return results
|