Spaces:
Running
on
L4
Running
on
L4
File size: 54,671 Bytes
288376d 2df809d 390338e 2df809d 288376d 2df809d 288376d 2df809d 390338e 2df809d 390338e 2df809d 288376d 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d 390338e 2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 |
import os
from typing import List, Union
from copy import deepcopy
import math
import PIL
import numpy as np
from einops import repeat
import torch
import torch.nn.functional as F
import torchvision.transforms as tvf
from diffusers.utils import export_to_gif
import sys
sys.path.append("./extern/CUT3R")
from extern.CUT3R.surfel_inference import run_inference_from_pil
from extern.CUT3R.add_ckpt_path import add_path_to_dust3r
from extern.CUT3R.src.dust3r.model import ARCroco3DStereo
from modeling import VMemWrapper, VMemModel, VMemModelParams
from modeling.modules.autoencoder import AutoEncoder
from modeling.sampling import DDPMDiscretization, DiscreteDenoiser, create_samplers
from modeling.modules.conditioner import CLIPConditioner
from utils import (encode_vae_image,
encode_image,
visualize_depth,
visualize_surfels,
tensor_to_pil,
Octree,
Surfel,
get_plucker_coordinates,
do_sample,
average_camera_pose)
ImgNorm = tvf.Compose([tvf.ToTensor(), tvf.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
class VMemPipeline:
def __init__(self, config, device="cpu", dtype=torch.float32):
self.config = config
model_path = self.config.model.get("model_path", None)
self.model = VMemModel(VMemModelParams()).to(device, dtype)
# load from huggingface
from huggingface_hub import hf_hub_download
state_dict = torch.load(hf_hub_download(repo_id=model_path, filename="vmem_weights.pth"), map_location='cpu')
state_dict = {k.replace("module.", "") if "module." in k else k: v for k, v in state_dict.items()}
self.model.load_state_dict(state_dict, strict=True)
self.model_wrapper = VMemWrapper(self.model)
self.model_wrapper.eval()
self.vae = AutoEncoder(chunk_size=1).to(device, dtype)
self.vae.eval()
self.image_encoder = CLIPConditioner().to(device, dtype)
self.image_encoder.eval()
self.discretization = DDPMDiscretization()
self.denoiser = DiscreteDenoiser(discretization=self.discretization, num_idx=1000, device=device)
self.sampler = create_samplers(guider_types=config.model.guider_types,
discretization=self.discretization,
num_frames=config.model.num_frames,
num_steps=config.model.inference_num_steps,
cfg_min=config.model.cfg_min,
device=device)
self.dtype = dtype
self.device = device
surfel_model_path = hf_hub_download(repo_id=self.config.surfel.model_path, filename="cut3r_512_dpt_4_64.pth")
print(f"Loading model from {surfel_model_path}...")
add_path_to_dust3r(surfel_model_path)
self.surfel_model = ARCroco3DStereo.from_pretrained(surfel_model_path).to(device)
self.surfel_model.eval()
# Import CUT3R scene alignment module
from extern.CUT3R.cloud_opt.dust3r_opt import global_aligner, GlobalAlignerMode
self.GlobalAlignerMode = GlobalAlignerMode
self.global_aligner = global_aligner
self.use_non_maximum_suppression = self.config.model.use_non_maximum_suppression
self.context_num_frames = self.config.model.context_num_frames
self.target_num_frames = self.config.model.target_num_frames
self.original_height = self.config.model.original_height
self.original_width = self.config.model.original_width
self.height = self.config.model.height
self.width = self.config.model.width
self.w_ratio = self.width / self.original_width
self.h_ratio = self.height / self.original_height
self.camera_scale = self.config.model.camera_scale
self.latents = []
self.encoder_embeddings = []
self.poses = []
self.Ks = []
self.surfel_Ks = []
self.surfels = []
self.surfel_depths = []
self.surfel_to_timestep = {}
self.pil_frames = []
self.visualize_dir = self.config.model.samples_dir
if not os.path.exists(self.visualize_dir):
os.makedirs(self.visualize_dir)
self.global_step = 0
def reset(self):
self.rgb_vae_latents = []
self.rgb_encoder_embeddings = []
self.poses = []
self.focal_lengths = []
self.surfels = []
self.surfel_Ks = []
self.surfel_depths = []
self.Ks = []
self.surfel_to_timestep = {}
self.all_pil_frames = []
self.global_step = 0
def initialize(self, image, c2w, K):
"""
Initialize the pipeline with a single image and camera parameters.
This method sets up internal state without generating additional frames.
Args:
image: Tensor of input image [1, C, H, W]
c2w: Camera-to-world matrix (4x4)
K: Camera intrinsic matrix
Returns:
PIL image of the initial frame
"""
# Reset internal state
self.reset()
# Process the image
if isinstance(image, torch.Tensor):
image_tensor = image
else:
# Convert to tensor if it's not already (fallback)
image_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() / 127.5 - 1.0
image_tensor = image_tensor.unsqueeze(0).to(self.device, self.dtype)
# Encode the image to VAE latents
self.latents = [encode_vae_image(image_tensor, self.vae, self.device, self.dtype).detach().cpu().numpy()[0]]
# Encode the image embeddings for the image_encoder
self.encoder_embeddings = [encode_image(image_tensor, self.image_encoder, self.device, self.dtype).detach().cpu().numpy()[0]]
# Store camera pose and intrinsics
self.c2ws = [c2w]
self.Ks = [K]
# Convert to PIL and store
pil_frame = tensor_to_pil(image_tensor)
self.pil_frames = [pil_frame]
return pil_frame
def geodesic_distance(self,
camera_pose1,
camera_pose2,
weight_translation=1,):
"""
Computes the geodesic distance between two camera poses in SE(3).
Parameters:
extrinsic1 (torch.Tensor): 4x4 extrinsic matrix of the first pose.
extrinsic2 (torch.Tensor): 4x4 extrinsic matrix of the second pose.
Returns:
float: Geodesic distance between the two poses.
"""
# Extract the rotation and translation components
R1 = camera_pose1[:3, :3]
t1 = camera_pose1[:3, 3]
R2 = camera_pose2[:3, :3]
t2 = camera_pose2[:3, 3]
# Compute the translation distance (Euclidean distance)
translation_distance = torch.norm(t1 - t2)
# Compute the relative rotation matrix
R_relative = torch.matmul(R1.T, R2)
# Compute the angular distance from the trace of the relative rotation matrix
trace_value = torch.trace(R_relative)
# Clamp the trace value to avoid numerical issues
trace_value = torch.clamp(trace_value, -1.0, 3.0)
angular_distance = torch.acos((trace_value - 1) / 2)
# Combine the two distances
geodesic_dist = translation_distance*weight_translation + angular_distance
return geodesic_dist
def render_surfels_to_image(
self,
surfels,
poses,
focal_lengths,
principal_points,
image_width,
image_height,
disk_resolution=16
):
"""
Renders oriented surfels into a 2D RGB image with a simple z-buffer.
Each surfel is treated as a 2D disk in 3D, oriented by its normal.
The disk is approximated by a polygon of 'disk_resolution' segments.
Args:
surfels (list): List of Surfel objects, each having:
- position: (x, y, z) in world coords
- normal: (nx, ny, nz)
- radius: float, radius in world units
poses (torch.Tensor): Tensor of poses, shape [4, 4]
focal_lengths (torch.Tensor): Tensor of focal lengths, shape [2]
principal_points (torch.Tensor): Tensor of principal points, shape [2]
image_width, image_height (int): output image size
disk_resolution (int): number of segments for approximating each disk
Returns:
Dictionary containing:
- depth: depth map
- surfel_index_map: map of surfel indices
- cos_value_map: map of cosine values between view and normal directions
"""
if isinstance(focal_lengths, torch.Tensor):
focal_lengths = focal_lengths.detach().cpu().numpy()
if isinstance(principal_points, torch.Tensor):
principal_points = principal_points.detach().cpu().numpy()
if isinstance(poses, torch.Tensor):
poses = poses.detach().cpu().numpy()
# Initialize buffers
surfel_index_map = np.full((image_height, image_width), -1, dtype=np.int32)
z_buffer = np.full((image_height, image_width), np.inf, dtype=np.float32)
cos_buffer = np.zeros((image_height, image_width), dtype=np.float32)
# Unpack camera parameters
fx, fy, cx, cy = focal_lengths[0], focal_lengths[1], principal_points[0], principal_points[1]
R = poses[0:3, 0:3]
t = poses[0:3, 3]
# Compute view frustum planes in world space
# We'll use 6 planes: near, far, left, right, top, bottom
near_z = 0.1 # Near plane distance
far_z = 1000.0 # Far plane distance
# Convert all surfel positions to camera space at once for efficient culling
positions = np.array([s.position for s in surfels])
positions_h = np.concatenate([positions, np.ones((len(positions), 1))], axis=1)
# Compute camera matrix
extrinsics = np.zeros((4, 4))
extrinsics[0:3, 0:3] = np.linalg.inv(R)
extrinsics[0:3, 3] = -np.linalg.inv(R) @ t
extrinsics[3, 3] = 1
# Transform all points to camera space at once
cam_points = (extrinsics @ positions_h.T).T
cam_points = cam_points[:, :3] / cam_points[:, 3:]
# Compute view frustum culling mask
in_front = cam_points[:, 2] > near_z
behind_far = cam_points[:, 2] < far_z
# Project points to get screen coordinates
screen_x = fx * (cam_points[:, 0] / cam_points[:, 2]) + cx
screen_y = fy * (cam_points[:, 1] / cam_points[:, 2]) + cy
# Check which points are within screen bounds (with some margin for surfel radius)
margin = 50 # Margin in pixels to account for surfel radius
in_screen_x = (screen_x >= -margin) & (screen_x < image_width + margin)
in_screen_y = (screen_y >= -margin) & (screen_y < image_height + margin)
# Combine all culling masks
visible_mask = in_front & behind_far & in_screen_x & in_screen_y
visible_indices = np.where(visible_mask)[0]
def point_in_polygon_2d(px, py, polygon):
"""Fast point-in-polygon test using ray casting"""
inside = False
n = len(polygon)
j = n - 1
for i in range(n):
if (((polygon[i][1] > py) != (polygon[j][1] > py)) and
(px < (polygon[j][0] - polygon[i][0]) * (py - polygon[i][1]) /
(polygon[j][1] - polygon[i][1] + 1e-15) + polygon[i][0])):
inside = not inside
j = i
return inside
# Pre-compute angle samples for circle approximation
angles = np.linspace(0, 2*math.pi, disk_resolution, endpoint=False)
cos_angles = np.cos(angles)
sin_angles = np.sin(angles)
# Process only visible surfels
for idx in visible_indices:
surfel = surfels[idx]
px, py, pz = surfel.position
nx, ny, nz = surfel.normal
radius = surfel.radius
# Skip degenerate normals
normal = np.array([nx, ny, nz], dtype=float)
norm_len = np.linalg.norm(normal)
if norm_len < 1e-12:
continue
normal /= norm_len
# Compute view direction and cosine value
point_direction = (px, py, pz) - t
point_direction = point_direction / np.linalg.norm(point_direction)
cos_value = np.dot(point_direction, normal)
# Skip backfaces
if cos_value < 0:
continue
# Build local coordinate frame
up = np.array([0, 0, 1], dtype=float)
if abs(np.dot(normal, up)) > 0.9:
up = np.array([0, 1, 0], dtype=float)
xAxis = np.cross(normal, up)
xAxis /= np.linalg.norm(xAxis)
yAxis = np.cross(normal, xAxis)
yAxis /= np.linalg.norm(yAxis)
# Generate circle points efficiently
offsets = radius * (cos_angles[:, None] * xAxis + sin_angles[:, None] * yAxis)
circle_points = positions[idx] + offsets
# Project all circle points at once
circle_points_h = np.concatenate([circle_points, np.ones((len(circle_points), 1))], axis=1)
cam_circle = (extrinsics @ circle_points_h.T).T
depths = cam_circle[:, 2]
valid_mask = depths > 0
if not np.any(valid_mask):
continue
screen_points = np.zeros((len(circle_points), 2))
screen_points[:, 0] = fx * (cam_circle[:, 0] / depths) + cx
screen_points[:, 1] = fy * (cam_circle[:, 1] / depths) + cy
# Get bounding box
valid_points = screen_points[valid_mask]
if len(valid_points) < 3:
continue
min_x = max(0, int(np.floor(np.min(valid_points[:, 0]))))
max_x = min(image_width - 1, int(np.ceil(np.max(valid_points[:, 0]))))
min_y = max(0, int(np.floor(np.min(valid_points[:, 1]))))
max_y = min(image_height - 1, int(np.ceil(np.max(valid_points[:, 1]))))
# Average depth for z-buffer
avg_depth = float(np.mean(depths[valid_mask]))
# Rasterize polygon
for py_ in range(min_y, max_y + 1):
for px_ in range(min_x, max_x + 1):
if point_in_polygon_2d(px_, py_, valid_points):
if avg_depth < z_buffer[py_, px_]:
z_buffer[py_, px_] = avg_depth
surfel_index_map[py_, px_] = idx
cos_buffer[py_, px_] = cos_value
# Clean up depth buffer
depth = z_buffer
depth[depth == np.inf] = 0
return {
"depth": depth,
"surfel_index_map": surfel_index_map,
"cos_value_map": cos_buffer
}
def get_frame_distribution(self,
n,
ratios):
"""
Given:
- an integer n,
- a list of k ratios whose sum is 1 (k <= n),
return a list of k integers [x1, x2, ..., xk],
such that each xi >= 1, sum(xi) = n, and
the xi are as proportional to ratios as possible.
"""
k = len(ratios)
if k > n:
# set the top n ratios to 1
result = [0] * k
sort_indices = np.argsort(ratios)[::-1]
for sort_index in sort_indices[:n]:
result[sort_index] = 1
return result
# 1. Reserve 1 for each ratio
result = [1] * k
# 2. Distribute the leftover among the k ratios proportionally
leftover = n - k
if leftover == 0:
# If n == k, each ratio just gets 1
return result
# Compute products for leftover distribution
products = [r * leftover for r in ratios]
floored = [int(p // 1) for p in products] # floor of each product
sum_floors = sum(floored)
leftover2 = leftover - sum_floors # how many units still to distribute
# Add the floored part to the result
for i in range(k):
result[i] += floored[i]
# Sort by the fractional remainder, descending
remainders = [(p - f, i) for i, (p, f) in enumerate(zip(products, floored))]
remainders.sort(key=lambda x: x[0], reverse=True)
# Distribute the leftover2 among the largest fractional remainders
for j in range(leftover2):
_, idx = remainders[j]
result[idx] = 1
return result
def process_retrieved_spatial_information(self, retrieved_spatial_information):
timestep_count = {}
surfel_index_map = retrieved_spatial_information["surfel_index_map"]
cos_value_map = retrieved_spatial_information["cos_value_map"]
depth_map = retrieved_spatial_information["depth"]
filtered_cos_value = cos_value_map[surfel_index_map >= 0]
filtered_surfel_index = surfel_index_map[surfel_index_map >= 0]
filtered_depth = depth_map[surfel_index_map >= 0]
assert len(filtered_cos_value) == len(filtered_surfel_index), "filtered_cos_value and filtered_surfel_index should have the same length"
for j in range(len(filtered_surfel_index)):
cos_value = filtered_cos_value[j]
depth_value = filtered_depth[j]
if cos_value < 0:
continue
surfel_index = filtered_surfel_index[j]
timesteps = self.surfel_to_timestep[surfel_index]
for timestep in timesteps:
if timestep not in timestep_count:
timestep_count[timestep] = cos_value/(1+depth_value)
timestep_count[timestep] += cos_value/(1+depth_value)
timestep_count_values = np.array(list(timestep_count.values()))
timestep_count_ratios = timestep_count_values / np.sum(timestep_count_values)
timestep_weights = {k: timestep_count_ratios[i] for i, k in enumerate(timestep_count)}
num_retrieved_frames = min(self.config.model.context_num_frames+10, len(timestep_weights))
frame_count = self.get_frame_distribution(num_retrieved_frames, list(timestep_weights.values())) # hard code
frame_count = {k: int(v) for k, v in zip(timestep_count.keys(), frame_count)}
# sort timestep_weights and frame_distribution by timestep without
timestep_weights = sorted(timestep_weights.items(), key=lambda x: x[0])
frame_count = sorted(frame_count.items(), key=lambda x: x[0])
return timestep_weights, frame_count
def get_context_info(self, target_c2ws, use_non_maximum_suppression=None):
"""Get context information for novel view synthesis.
Args:
target_c2ws: Target camera-to-world matrices
Ks: Camera intrinsic matrices
current_timestep: Current timestep (used in temporal mode)
Returns:
Dictionary containing context information for the target view
"""
# Function to prepare context tensors from indices
def prepare_context_data(indices):
c2ws = [self.c2ws[i] for i in indices]
latents = [torch.from_numpy(self.latents[i]).to(self.device, self.dtype) for i in indices]
embeddings = [torch.from_numpy(self.encoder_embeddings[i]).to(self.device, self.dtype) for i in indices]
intrinsics = [self.Ks[i] for i in indices]
return c2ws, latents, embeddings, intrinsics, indices
if len(self.pil_frames) == 1:
context_time_indices = [0]
else:
# get the average camera pose
average_c2w = average_camera_pose(target_c2ws[-self.config.model.context_num_frames//4:])
transformed_average_c2w = self.get_transformed_c2ws(average_c2w)
target_K = np.mean(self.surfel_Ks, axis=0)
# Select frames using surfel-based relevance
retrieved_info = self.render_surfels_to_image(
self.surfels,
transformed_average_c2w,
[target_K*0.65] * 2,
principal_points=(int(self.config.surfel.width/2), int(self.config.surfel.height/2)),
image_width=int(self.config.surfel.width),
image_height=int(self.config.surfel.height)
)
_, frame_count = self.process_retrieved_spatial_information(retrieved_info)
if self.config.inference.visualize:
visualize_depth(retrieved_info["depth"],
visualization_dir=self.visualize_dir,
file_name=f"retrieved_depth_surfels.png",
size=(self.width, self.height))
# Build candidate frames based on relevance count
candidates = []
for frame, count in frame_count:
candidates.extend([frame] * count)
indices_to_frame = {
i: frame for i, frame in enumerate(candidates)
}
# Sort candidates by distance to target view
distances = [self.geodesic_distance(torch.from_numpy(average_c2w).to(self.device, self.dtype),
torch.from_numpy(self.c2ws[frame]).to(self.device, self.dtype),
weight_translation=self.config.model.translation_distance_weight).item()
for frame in candidates]
sorted_indices = torch.argsort(torch.tensor(distances))
sorted_frames = [indices_to_frame[int(i.item())] for i in sorted_indices]
max_frames = min(self.config.model.context_num_frames, len(candidates), len(self.latents))
is_second_step = len(self.pil_frames) == 5
# Adaptively determine initial threshold based on camera pose distribution
if use_non_maximum_suppression is None:
use_non_maximum_suppression = self.use_non_maximum_suppression
if use_non_maximum_suppression:
if is_second_step:
# Calculate pairwise distances between existing frames
pairwise_distances = []
for i in range(len(self.c2ws)):
for j in range(i+1, len(self.c2ws)):
sim = self.geodesic_distance(
torch.from_numpy(np.array(self.c2ws[i])).to(self.device, self.dtype),
torch.from_numpy(np.array(self.c2ws[j])).to(self.device, self.dtype),
weight_translation=self.config.model.translation_distance_weight
)
pairwise_distances.append(sim.item())
if pairwise_distances:
# Sort distances and take percentile as threshold
pairwise_distances.sort()
percentile_idx = int(len(pairwise_distances) * 0.5) # 25th percentile
self.initial_threshold = pairwise_distances[percentile_idx]
else:
self.initial_threshold = 1
else:
self.initial_threshold = 1e8
selected_indices = []
current_threshold = self.initial_threshold
# Always start with the closest pose
selected_indices.append(sorted_frames[0])
if not use_non_maximum_suppression:
selected_indices.append(len(self.c2ws) - 1)
# Try with increasingly relaxed thresholds until we get enough frames
while len(selected_indices) < max_frames and current_threshold >= 1e-5 and use_non_maximum_suppression:
# Try to add each subsequent pose in order of distance
for idx in sorted_frames[1:]:
if len(selected_indices) >= max_frames:
break
# Check if this candidate is sufficiently different from all selected frames
is_too_similar = False
for selected_idx in selected_indices:
similarity = self.geodesic_distance(
torch.from_numpy(np.array(self.c2ws[idx])).to(self.device, self.dtype),
torch.from_numpy(np.array(self.c2ws[selected_idx])).to(self.device, self.dtype),
weight_translation=self.config.model.translation_distance_weight
)
if similarity < current_threshold:
is_too_similar = True
break
# Add to selected frames if not too similar to any existing selection
if not is_too_similar:
selected_indices.append(idx)
# If we still don't have enough frames, relax the threshold and try again
if len(selected_indices) < max_frames:
current_threshold /= 1.2
else:
break
# If we still don't have enough frames, just take the top frames by distance
if len(selected_indices) < max_frames:
available_indices = []
for idx in sorted_frames:
if idx not in selected_indices:
available_indices.append(idx)
selected_indices.extend(available_indices[:max_frames-len(selected_indices)])
# Convert to tensor and maintain original order (don't reverse)
context_time_indices = torch.from_numpy(np.array(selected_indices))
context_data = prepare_context_data(context_time_indices)
(context_c2ws, context_latents, context_encoder_embeddings, context_Ks, context_time_indices) = context_data
print(f"context_time_indices: {context_time_indices}")
return {
"context_c2ws": torch.from_numpy(np.array(context_c2ws)).to(self.device, self.dtype),
"context_latents": torch.stack(context_latents).to(self.device, self.dtype),
"context_encoder_embeddings": torch.stack(context_encoder_embeddings).to(self.device, self.dtype),
"context_Ks": torch.from_numpy(np.array(context_Ks)).to(self.device, self.dtype),
"context_time_indices": context_time_indices,
}
def merge_surfels(
self,
new_surfels: list,
current_timestep: str,
existing_surfels: list,
existing_surfel_to_timestep: dict,
position_threshold: Union[float, None] = None, # Now optional
normal_threshold: float = 0.7,
max_points_per_node: int = 10
):
assert len(existing_surfels) == len(existing_surfel_to_timestep), (
"existing_surfels and existing_surfel_to_timestep should have the same length"
)
# Automatically calculate position threshold if not provided
if position_threshold is None:
# Calculate average radius from both new and existing surfels
all_radii = np.array([s.radius for s in existing_surfels + new_surfels])
if len(all_radii) > 0:
# Use mean radius as base threshold with a scaling factor
mean_radius = np.mean(all_radii)
std_radius = np.std(all_radii)
# Position threshold = mean + 0.5 * std to account for variance
position_threshold = mean_radius + 0.5 * std_radius
else:
# Fallback to default if no surfels available
position_threshold = 0.025
positions = np.array([s.position for s in existing_surfels]) # Shape: (N, 3)
normals = np.array([s.normal for s in existing_surfels]) # Shape: (N, 3)
if len(positions) > 0:
octree = Octree(positions, max_points=max_points_per_node)
else:
octree = None
filtered_surfels = []
merge_count = 0
for new_surfel in new_surfels:
is_merged = False
if octree is not None:
neighbor_indices = octree.query_ball_point(new_surfel.position, position_threshold)
else:
neighbor_indices = []
for idx in neighbor_indices:
if np.dot(normals[idx], new_surfel.normal) > normal_threshold:
if current_timestep not in existing_surfel_to_timestep[idx]:
existing_surfel_to_timestep[idx].append(current_timestep)
is_merged = True
merge_count += 1
break
if not is_merged:
filtered_surfels.append(new_surfel)
print(f"merge_count: {merge_count}")
return filtered_surfels, existing_surfel_to_timestep
def pointmap_to_surfels(self,
pointmap: torch.Tensor,
focal_lengths: torch.Tensor,
depths: torch.Tensor,
confs: torch.Tensor,
poses: torch.Tensor, # shape: (4, 4)
radius_scale: float = 0.5,
estimate_normals: bool = True):
"""
Vectorized version of pointmap to surfels conversion.
All operations are performed on the specified device (self.device) until final numpy conversion.
"""
if isinstance(poses, np.ndarray):
poses = torch.from_numpy(poses).to(self.device)
if isinstance(focal_lengths, np.ndarray):
focal_lengths = torch.from_numpy(focal_lengths).to(self.device)
if isinstance(depths, np.ndarray):
depths = torch.from_numpy(depths).to(self.device)
if isinstance(confs, np.ndarray):
confs = torch.from_numpy(confs).to(self.device)
# Ensure all inputs are on the correct device
pointmap = pointmap.to(self.device)
focal_lengths = focal_lengths.to(self.device)
depths = depths.to(self.device)
confs = confs.to(self.device)
poses = poses.to(self.device)
if len(focal_lengths) == 2:
focal_lengths = torch.mean(focal_lengths, dim=0)
# 1) Estimate normals
if estimate_normals:
normal_map = self.estimate_normal_from_pointmap(pointmap)
else:
normal_map = torch.zeros_like(pointmap)
# Create mask for valid points
# depth threshold is the 95 percentile of the depth map
depth_threshold = torch.quantile(depths, 0.999)
valid_mask = (depths <= depth_threshold) & (confs >= self.config.surfel.conf_thresh)
# Get positions, normals and depths for valid points
positions = pointmap[valid_mask] # [N, 3]
normals = normal_map[valid_mask] # [N, 3]
valid_depths = depths[valid_mask] # [N]
# Calculate view directions for all valid points at once
camera_pos = poses[0:3, 3]
view_directions = positions - camera_pos.unsqueeze(0) # [N, 3]
view_directions = F.normalize(view_directions, dim=1) # [N, 3]
# Calculate dot products between view directions and normals
dot_products = torch.sum(view_directions * normals, dim=1) # [N]
# Flip normals where needed
flip_mask = dot_products < 0
normals[flip_mask] = -normals[flip_mask]
# Recalculate dot products with potentially flipped normals
dot_products = torch.abs(torch.sum(view_directions * normals, dim=1)) # [N]
# Calculate adjustment values and radii
adjustment_values = 0.2 + 0.8 * dot_products # [N]
radii = (radius_scale * valid_depths / focal_lengths / adjustment_values) # [N]
# Convert to numpy only at the end
positions = positions.detach().cpu().numpy()
normals = normals.detach().cpu().numpy()
radii = radii.detach().cpu().numpy()
# Create surfels list using list comprehension
surfels = [Surfel(pos, norm, rad) for pos, norm, rad in zip(positions, normals, radii)]
return surfels
def estimate_normal_from_pointmap(self,pointmap: torch.Tensor) -> torch.Tensor:
h, w = pointmap.shape[:2]
device = pointmap.device # Keep the device (CPU/GPU) consistent
dtype = pointmap.dtype
# Initialize the normal map
normal_map = torch.zeros((h, w, 3), device=device, dtype=dtype)
for y in range(h):
for x in range(w):
# Check if neighbors are within bounds
if x+1 >= w or y+1 >= h:
continue
p_center = pointmap[y, x]
p_right = pointmap[y, x+1]
p_down = pointmap[y+1, x]
# Compute vectors
v1 = p_right - p_center
v2 = p_down - p_center
v1 = v1 / torch.linalg.norm(v1)
v2 = v2 / torch.linalg.norm(v2)
# Cross product in camera coordinates
n_c = torch.cross(v1, v2)
# n_c *= 1e10
# Compute norm of the normal vector
norm_len = torch.linalg.norm(n_c)
if norm_len < 1e-8:
continue
# Normalize and store
normal_map[y, x] = n_c / norm_len
return normal_map
def get_transformed_c2ws(self, c2ws=None):
if c2ws is None:
c2ws = self.c2ws
c2ws_transformed = deepcopy(np.array(c2ws))
c2ws_transformed[..., :, [1, 2]] *= -1
return c2ws_transformed
def construct_and_store_scene(self,
input_images: List[PIL.Image.Image],
time_indices,
niter = 1000,
lr = 0.01,
device = 'cuda',
):
"""
Constructs a scene from input images and stores the resulting surfels.
Args:
input_images: List of PIL images to process
time_indices: The time indices for each image
niter: Number of iterations for optimization
lr: Learning rate for optimization
device: Device to run inference on
only_last_frame: Whether to only process the last frame
"""
# Flip Y and Z components of camera poses to match dataset convention
c2ws_transformed = self.get_transformed_c2ws()
scene = run_inference_from_pil(
input_images,
self.surfel_model,
poses=c2ws_transformed,
depths=torch.from_numpy(np.array(self.surfel_depths)) if len(self.surfel_depths) > 0 else None,
lr = lr,
niter = niter,
visualize=self.config.inference.visualize_surfel,
device=device,
)
# Extract outputs
pointcloud = torch.cat(scene['point_clouds'], dim=0)
confs = torch.cat(scene['confidences'], dim=0)
depths = torch.cat(scene['depths'], dim=0)
focal_lengths = scene['camera_info']['focal']
self.surfel_Ks.extend([focal_lengths[i] for i in range(len(focal_lengths))])
self.surfel_depths = [depths[i].detach().cpu().numpy() for i in range(len(depths))]
# Resize pointcloud
pointcloud = pointcloud.permute(0, 3, 1, 2)
pointcloud = F.interpolate(
pointcloud,
scale_factor=self.config.surfel.shrink_factor,
mode='bilinear'
)
pointcloud = pointcloud.permute(0, 2, 3, 1)
depths = depths.unsqueeze(1)
depths = F.interpolate(
depths,
scale_factor=self.config.surfel.shrink_factor,
mode='bilinear'
)
depths = depths.squeeze(1)
confs = confs.unsqueeze(1)
confs = F.interpolate(
confs,
scale_factor=self.config.surfel.shrink_factor,
mode='bilinear'
)
confs = confs.squeeze(1)
start_idx = 0 if len(self.surfels) == 0 else len(pointcloud) - self.config.model.target_num_frames
end_idx = len(pointcloud)
for frame_idx in range(start_idx, end_idx):
surfels = self.pointmap_to_surfels(
pointmap=pointcloud[frame_idx],
focal_lengths=focal_lengths[frame_idx] * self.config.surfel.shrink_factor,
depths=depths[frame_idx],
confs=confs[frame_idx],
poses=c2ws_transformed[frame_idx],
estimate_normals=True,
radius_scale=self.config.surfel.radius_scale,
)
if len(self.surfels) > 0:
surfels, self.surfel_to_timestep = self.merge_surfels(
new_surfels=surfels,
current_timestep=frame_idx,
existing_surfels=self.surfels,
existing_surfel_to_timestep=self.surfel_to_timestep,
# position_threshold=self.config.surfel.merge_position_threshold,
normal_threshold=self.config.surfel.merge_normal_threshold
)
# Update timestep mapping
num_surfels = len(surfels)
surfel_start_index = len(self.surfels)
for surfel_index in range(num_surfels):
self.surfel_to_timestep[surfel_start_index + surfel_index] = [frame_idx]
self.surfels.extend(surfels)
if self.config.inference.visualize_surfel:
visualize_surfels(self.surfels, draw_normals=True, normal_scale=0.0003)
def get_translation_scaling_factor(self, c2ws):
# camera centering
"""
Args:
c2ws: camera-to-world matrices, shape: (N, 4, 4)
Returns:
translation_scaling_factor: translation scaling factor
"""
ref_c2ws = c2ws
camera_dist_2med = torch.norm(
ref_c2ws[:, :3, 3] - ref_c2ws[:, :3, 3].median(0, keepdim=True).values,
dim=-1,
)
valid_mask = camera_dist_2med <= torch.clamp(
torch.quantile(camera_dist_2med, 0.97) * 10,
max=1e6,
)
c2ws[:, :3, 3] -= ref_c2ws[valid_mask, :3, 3].mean(0, keepdim=True)
# camera normalization
camera_dists = c2ws[:, :3, 3].clone()
translation_scaling_factor = (
self.camera_scale
if torch.isclose(
torch.norm(camera_dists[0]),
torch.zeros(1).to(self.device, self.dtype),
atol=1e-5,
).any()
else (self.camera_scale / torch.norm(camera_dists[0]) + 0.01)
)
return translation_scaling_factor, c2ws
def get_cond(self, context_latents, all_c2ws, all_Ks, translation_scaling_factor, encoder_embeddings, input_masks):
context_encoder_embeddings = torch.mean(encoder_embeddings, dim=0)
input_masks = input_masks.bool()
# batch_size = context_latents.shape[0]
all_c2ws[:, :, [1, 2]] *= -1
all_w2cs = torch.linalg.inv(all_c2ws)
all_c2ws[:, :3, 3] *= translation_scaling_factor
all_w2cs[:, :3, 3] *= translation_scaling_factor
num_cameras = all_w2cs.shape[0]
pluckers = get_plucker_coordinates(
extrinsics_src=all_w2cs[:1],
extrinsics=all_w2cs,
intrinsics=all_Ks.float().clone(),
target_size=(context_latents.shape[-2], context_latents.shape[-1]),
) # [B, 3, 6, H, W]
target_latents = torch.nn.functional.pad(
torch.zeros(self.config.model.num_frames - context_latents.shape[0], *context_latents.shape[1:]), (0, 0, 0, 0, 0, 1), value=0
).to(self.device, self.dtype)
context_latents = torch.nn.functional.pad(
context_latents, (0, 0, 0, 0, 0, 1), value=1.0
)
c_crossattn = repeat(context_encoder_embeddings, "d -> n 1 d", n=num_cameras)
# c_crossattn = repeat(context_encoder_embeddings, "b 1 d -> b n 1 d", n=num_cameras)
uc_crossattn = torch.zeros_like(c_crossattn)
c_replace = torch.zeros((num_cameras, *context_latents.shape[1:])).to(self.device)
c_replace[input_masks] = context_latents
c_replace[~input_masks] = target_latents
uc_replace = torch.zeros_like(c_replace)
c_concat = torch.cat(
[
repeat(
input_masks,
"n ->n 1 h w",
h=pluckers.shape[-2],
w=pluckers.shape[-1],
),
pluckers,
],
1,
)
uc_concat = torch.cat(
[torch.zeros((num_cameras, 1, *pluckers.shape[-2:])).to(self.device), pluckers], 1
)
c_dense_vector = pluckers
uc_dense_vector = c_dense_vector
c = {
"crossattn": c_crossattn,
"replace": c_replace,
"concat": c_concat,
"dense_vector": c_dense_vector,
}
uc = {
"crossattn": uc_crossattn,
"replace": uc_replace,
"concat": uc_concat,
"dense_vector": uc_dense_vector,
}
return {"c": c,
"uc": uc,
"all_c2ws": all_c2ws,
"all_Ks": all_Ks,
"input_masks": input_masks,
"num_cameras": num_cameras}
def _generate_frames_for_trajectory(self, c2ws_tensor, Ks_tensor, use_non_maximum_suppression=None):
"""
Internal helper method to generate frames for a trajectory.
Args:
c2ws: List of camera-to-world matrices
Ks: List of camera intrinsic matrices
Returns:
List of all generated PIL frames
"""
padding_size = 0
# Determine generation steps based on trajectory length
generation_steps = (len(c2ws_tensor) + 1 - self.config.model.num_frames) // self.config.model.target_num_frames + 2
# Generate frames in steps
cur_start_idx = 0
for i in range(generation_steps):
# Calculate frame indices for this step
if i > 0:
cur_start_idx = cur_end_idx
if len(self.pil_frames) == 1: # first frame
cur_end_idx = min(cur_start_idx + self.config.model.num_frames - 1, len(c2ws_tensor))
else:
cur_end_idx = min(cur_start_idx + self.config.model.target_num_frames, len(c2ws_tensor))
target_length = cur_end_idx - cur_start_idx
if target_length <= 0:
break
# Handle padding for target frames if needed
if target_length < self.config.model.target_num_frames or (len(self.pil_frames) == 1 and target_length < self.config.model.num_frames - 1):
# Pad target_c2ws and target_Ks with the last frame
if len(self.pil_frames) == 1: # first frame
padding_size = self.config.model.num_frames - 1 - target_length
else:
padding_size = self.config.model.target_num_frames - target_length
padding = torch.tile(c2ws_tensor[cur_end_idx-1:cur_end_idx], (padding_size, 1, 1))
c2ws_tensor = torch.cat([c2ws_tensor, padding], dim=0)
padding_K = torch.tile(Ks_tensor[cur_end_idx-1:cur_end_idx], (padding_size, 1, 1))
Ks_tensor = torch.cat([Ks_tensor, padding_K], dim=0)
if len(self.pil_frames) == 1:
cur_end_idx = cur_start_idx + self.config.model.num_frames - 1
else:
cur_end_idx = cur_start_idx + self.config.model.target_num_frames
target_c2ws = c2ws_tensor[cur_start_idx:cur_end_idx]
target_Ks = Ks_tensor[cur_start_idx:cur_end_idx]
context_info = self.get_context_info(target_c2ws, use_non_maximum_suppression)
(context_c2ws,
context_latents,
context_encoder_embeddings,
context_Ks,
context_time_indices) \
= (context_info["context_c2ws"],
context_info["context_latents"],
context_info["context_encoder_embeddings"],
context_info["context_Ks"],
context_info["context_time_indices"])
# Prepare conditioning
all_c2ws = torch.cat([context_c2ws, target_c2ws], dim=0)
all_Ks = torch.cat([context_Ks, target_Ks], dim=0)
translation_scaling_factor, all_c2ws = self.get_translation_scaling_factor(all_c2ws)
input_masks = torch.cat([torch.ones(len(context_c2ws)), torch.zeros(len(target_c2ws))], dim=0).bool().to(self.device)
cond = self.get_cond(context_latents, all_c2ws, all_Ks, translation_scaling_factor, context_encoder_embeddings, input_masks)
# Generate samples
samples, samples_z = do_sample(self.model_wrapper,
self.vae,
self.denoiser,
self.sampler[0],
cond["c"],
cond["uc"],
cond["all_c2ws"],
cond["all_Ks"],
input_masks,
H=576, W=576, C=4, F=8, T=8,
cfg=self.config.model.cfg,
verbose=True,
global_pbar=None,
return_latents=True,
device=self.device)
# Process and store generated frames
target_num = torch.sum(~input_masks)
target_samples = samples[~input_masks]
target_pil_frames = [tensor_to_pil(target_samples[j]) for j in range(target_num)]
target_encoder_embeddings = encode_image(target_samples, self.image_encoder, self.device, self.dtype)
target_latents = samples_z[~input_masks]
for j in range(target_num - padding_size if padding_size > 0 else target_num):
self.latents.append(target_latents[j].detach().cpu().numpy())
self.encoder_embeddings.append(target_encoder_embeddings[j].detach().cpu().numpy())
self.Ks.append(target_Ks[j].detach().cpu().numpy())
self.c2ws.append(target_c2ws[j].detach().cpu().numpy())
self.pil_frames.append(target_pil_frames[j])
if self.config.inference.visualize:
self.pil_frames[-1].save(f"{self.config.visualization_dir}/final_{len(self.pil_frames):07d}.png")
# Update scene reconstruction if needed
self.construct_and_store_scene(self.pil_frames,
time_indices=context_time_indices,
niter=self.config.surfel.niter,
lr=self.config.surfel.lr,
device=self.device)
self.global_step += 1
if self.config.inference.visualize:
export_to_gif(self.pil_frames, f"{self.config.visualization_dir}/inference_all.gif")
# Return all frames or just the new ones
return self.pil_frames[-self.config.model.target_num_frames:] if len(self.pil_frames) > self.config.model.target_num_frames + 1 else self.pil_frames
def generate_trajectory_frames(self, c2ws: List[np.ndarray], Ks: List[np.ndarray], use_non_maximum_suppression=None):
"""
Generate frames for a new trajectory segment while maintaining the pipeline state.
This allows for interactive navigation through a scene.
Args:
c2ws: List of camera-to-world matrices for the new trajectory segment
Ks: List of camera intrinsic matrices for the new trajectory segment
Returns:
List of PIL images for the newly generated frames
"""
c2ws_tensor = torch.from_numpy(np.array(c2ws)).to(self.device, self.dtype)
Ks_tensor = torch.from_numpy(np.array(Ks)).to(self.device, self.dtype)
# translation_scaling_factor, c2ws_tensor = self.get_translation_scaling_factor(c2ws_tensor)
return self._generate_frames_for_trajectory(c2ws_tensor, Ks_tensor, use_non_maximum_suppression)
def undo_latest_move(self):
"""
Undo the latest move by deleting the most recent batch of camera poses, embeddings, and pil images.
This allows stepping back in the trajectory if navigation went in an undesired direction.
The method removes the last generated batch of frames (up to target_num_frames) since the pipeline
generates multiple frames at once during each generation step.
Returns:
bool: True if successfully removed the latest frames, False if there's nothing to remove
(e.g., only one frame in the pipeline)
"""
# Ensure we have more than one frame to avoid removing the initial frame
if len(self.pil_frames) <= 1:
print("Cannot undo: only one frame in the pipeline")
return False
# Determine how many frames to remove - up to target_num_frames
frames_to_remove = min(self.config.model.target_num_frames, len(self.pil_frames) - 1)
# Remove the latest entries from all state lists
for _ in range(frames_to_remove):
self.latents.pop()
self.encoder_embeddings.pop()
self.c2ws.pop()
self.Ks.pop()
self.pil_frames.pop()
# Handle surfels if using reconstructor
self.global_step -= frames_to_remove
for _ in range(frames_to_remove):
self.surfel_depths.pop()
# Find surfels that belong only to the removed timesteps
current_frame_count = len(self.pil_frames)
removed_timesteps = list(range(current_frame_count, current_frame_count + frames_to_remove))
surfels_to_remove = []
# Loop through surfel_to_timestep and update
updated_surfel_to_timestep = {}
for i, timesteps in self.surfel_to_timestep.items():
# Check if this surfel only belongs to removed frames
if all(ts in removed_timesteps for ts in timesteps):
surfels_to_remove.append(i)
else:
# Keep this surfel but remove the timesteps of removed frames
updated_timesteps = [ts for ts in timesteps if ts not in removed_timesteps]
updated_surfel_to_timestep[i] = updated_timesteps
# Now create new surfel list without the removed ones
updated_surfels = []
updated_final_surfel_to_timestep = {}
new_idx = 0
for i, surfel in enumerate(self.surfels):
if i not in surfels_to_remove:
updated_surfels.append(surfel)
updated_final_surfel_to_timestep[new_idx] = updated_surfel_to_timestep[i]
new_idx += 1
# Update surfel data
self.surfels = updated_surfels
self.surfel_to_timestep = updated_final_surfel_to_timestep
print(f"Successfully removed the latest {frames_to_remove} frames. {len(self.pil_frames)} frames remaining.")
return True
def __call__(self, image:torch.Tensor, c2ws: List[np.ndarray], Ks: List[np.ndarray]):
"""
Process an initial image and generate frames for a trajectory.
Args:
image: Initial image tensor
c2ws: Camera-to-world matrices for the trajectory
Ks: Camera intrinsic matrices for the trajectory
Returns:
List of PIL images for all generated frames
"""
# Initialize with the first frame
c2ws_tensor = torch.from_numpy(np.array(c2ws)).to(self.device, self.dtype)
Ks_tensor = torch.from_numpy(np.array(Ks)).to(self.device, self.dtype)
# translation_scaling_factor, c2ws_tensor = self.get_translation_scaling_factor(c2ws_tensor)
self.initialize(image, c2ws_tensor[0].detach().cpu().numpy(), Ks_tensor[0].detach().cpu().numpy())
return self._generate_frames_for_trajectory(c2ws_tensor[1:], Ks_tensor[1:])
|