File size: 24,895 Bytes
2df809d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
import torch
import os
from matplotlib.figure import Figure
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
import matplotlib as mpl
import cv2
import numpy as np
import matplotlib.cm as cm
import viser
import viser.transforms as tf
import time
import trimesh
import dataclasses
from scipy.spatial.transform import Rotation
from src.dust3r.viz import (
    add_scene_cam,
    CAM_COLORS,
    OPENGL,
    pts3d_to_trimesh,
    cat_meshes,
)


def todevice(batch, device, callback=None, non_blocking=False):
    """Transfer some variables to another device (i.e. GPU, CPU:torch, CPU:numpy).

    batch: list, tuple, dict of tensors or other things
    device: pytorch device or 'numpy'
    callback: function that would be called on every sub-elements.
    """
    if callback:
        batch = callback(batch)

    if isinstance(batch, dict):
        return {k: todevice(v, device) for k, v in batch.items()}

    if isinstance(batch, (tuple, list)):
        return type(batch)(todevice(x, device) for x in batch)

    x = batch
    if device == "numpy":
        if isinstance(x, torch.Tensor):
            x = x.detach().cpu().numpy()
    elif x is not None:
        if isinstance(x, np.ndarray):
            x = torch.from_numpy(x)
        if torch.is_tensor(x):
            x = x.to(device, non_blocking=non_blocking)
    return x


to_device = todevice  # alias


def to_numpy(x):
    return todevice(x, "numpy")


def segment_sky(image):
    import cv2
    from scipy import ndimage

    # Convert to HSV
    image = to_numpy(image)
    if np.issubdtype(image.dtype, np.floating):
        image = np.uint8(255 * image.clip(min=0, max=1))
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

    # Define range for blue color and create mask
    lower_blue = np.array([0, 0, 100])
    upper_blue = np.array([30, 255, 255])
    mask = cv2.inRange(hsv, lower_blue, upper_blue).view(bool)

    # add luminous gray
    mask |= (hsv[:, :, 1] < 10) & (hsv[:, :, 2] > 150)
    mask |= (hsv[:, :, 1] < 30) & (hsv[:, :, 2] > 180)
    mask |= (hsv[:, :, 1] < 50) & (hsv[:, :, 2] > 220)

    # Morphological operations
    kernel = np.ones((5, 5), np.uint8)
    mask2 = ndimage.binary_opening(mask, structure=kernel)

    # keep only largest CC
    _, labels, stats, _ = cv2.connectedComponentsWithStats(
        mask2.view(np.uint8), connectivity=8
    )
    cc_sizes = stats[1:, cv2.CC_STAT_AREA]
    order = cc_sizes.argsort()[::-1]  # bigger first
    i = 0
    selection = []
    while i < len(order) and cc_sizes[order[i]] > cc_sizes[order[0]] / 2:
        selection.append(1 + order[i])
        i += 1
    mask3 = np.in1d(labels, selection).reshape(labels.shape)

    # Apply mask
    return torch.from_numpy(mask3)


def convert_scene_output_to_glb(
    outdir,
    imgs,
    pts3d,
    mask,
    focals,
    cams2world,
    cam_size=0.05,
    show_cam=True,
    cam_color=None,
    as_pointcloud=False,
    transparent_cams=False,
    silent=False,
    save_name=None,
):
    assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
    pts3d = to_numpy(pts3d)
    imgs = to_numpy(imgs)
    focals = to_numpy(focals)
    cams2world = to_numpy(cams2world)

    scene = trimesh.Scene()

    # full pointcloud
    if as_pointcloud:
        pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
        col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
        pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
        scene.add_geometry(pct)
    else:
        meshes = []
        for i in range(len(imgs)):
            meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
        mesh = trimesh.Trimesh(**cat_meshes(meshes))
        scene.add_geometry(mesh)

    # add each camera
    if show_cam:
        for i, pose_c2w in enumerate(cams2world):
            if isinstance(cam_color, list):
                camera_edge_color = cam_color[i]
            else:
                camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
            add_scene_cam(
                scene,
                pose_c2w,
                camera_edge_color,
                None if transparent_cams else imgs[i],
                focals[i],
                imsize=imgs[i].shape[1::-1],
                screen_width=cam_size,
            )

    rot = np.eye(4)
    rot[:3, :3] = Rotation.from_euler("y", np.deg2rad(180)).as_matrix()
    scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
    if save_name is None:
        save_name = "scene"
    outfile = os.path.join(outdir, save_name + ".glb")
    if not silent:
        print("(exporting 3D scene to", outfile, ")")
    scene.export(file_obj=outfile)
    return outfile


@dataclasses.dataclass
class CameraState(object):
    fov: float
    aspect: float
    c2w: np.ndarray

    def get_K(self, img_wh):
        W, H = img_wh
        focal_length = H / 2.0 / np.tan(self.fov / 2.0)
        K = np.array(
            [
                [focal_length, 0.0, W / 2.0],
                [0.0, focal_length, H / 2.0],
                [0.0, 0.0, 1.0],
            ]
        )
        return K


def get_vertical_colorbar(h, vmin, vmax, cmap_name="jet", label=None, cbar_precision=2):
    """
    :param w: pixels
    :param h: pixels
    :param vmin: min value
    :param vmax: max value
    :param cmap_name:
    :param label
    :return:
    """
    fig = Figure(figsize=(2, 8), dpi=100)
    fig.subplots_adjust(right=1.5)
    canvas = FigureCanvasAgg(fig)

    ax = fig.add_subplot(111)
    cmap = cm.get_cmap(cmap_name)
    norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)

    tick_cnt = 6
    tick_loc = np.linspace(vmin, vmax, tick_cnt)
    cb1 = mpl.colorbar.ColorbarBase(
        ax, cmap=cmap, norm=norm, ticks=tick_loc, orientation="vertical"
    )

    tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc]
    if cbar_precision == 0:
        tick_label = [x[:-2] for x in tick_label]

    cb1.set_ticklabels(tick_label)

    cb1.ax.tick_params(labelsize=18, rotation=0)
    if label is not None:
        cb1.set_label(label)

    canvas.draw()
    s, (width, height) = canvas.print_to_buffer()

    im = np.frombuffer(s, np.uint8).reshape((height, width, 4))

    im = im[:, :, :3].astype(np.float32) / 255.0
    if h != im.shape[0]:
        w = int(im.shape[1] / im.shape[0] * h)
        im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA)

    return im


def colorize_np(
    x,
    cmap_name="jet",
    mask=None,
    range=None,
    append_cbar=False,
    cbar_in_image=False,
    cbar_precision=2,
):
    """
    turn a grayscale image into a color image
    :param x: input grayscale, [H, W]
    :param cmap_name: the colorization method
    :param mask: the mask image, [H, W]
    :param range: the range for scaling, automatic if None, [min, max]
    :param append_cbar: if append the color bar
    :param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image
    :return: colorized image, [H, W]
    """
    if range is not None:
        vmin, vmax = range
    elif mask is not None:

        vmin = np.min(x[mask][np.nonzero(x[mask])])
        vmax = np.max(x[mask])

        x[np.logical_not(mask)] = vmin

    else:
        vmin, vmax = np.percentile(x, (1, 100))
        vmax += 1e-6

    x = np.clip(x, vmin, vmax)
    x = (x - vmin) / (vmax - vmin)

    cmap = cm.get_cmap(cmap_name)
    x_new = cmap(x)[:, :, :3]

    if mask is not None:
        mask = np.float32(mask[:, :, np.newaxis])
        x_new = x_new * mask + np.ones_like(x_new) * (1.0 - mask)

    cbar = get_vertical_colorbar(
        h=x.shape[0],
        vmin=vmin,
        vmax=vmax,
        cmap_name=cmap_name,
        cbar_precision=cbar_precision,
    )

    if append_cbar:
        if cbar_in_image:
            x_new[:, -cbar.shape[1] :, :] = cbar
        else:
            x_new = np.concatenate(
                (x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1
            )
        return x_new
    else:
        return x_new


def colorize(
    x, cmap_name="jet", mask=None, range=None, append_cbar=False, cbar_in_image=False
):
    """
    turn a grayscale image into a color image
    :param x: torch.Tensor, grayscale image, [H, W] or [B, H, W]
    :param mask: torch.Tensor or None, mask image, [H, W] or [B, H, W] or None
    """

    device = x.device
    x = x.cpu().numpy()
    if mask is not None:
        mask = mask.cpu().numpy() > 0.99
        kernel = np.ones((3, 3), np.uint8)

    if x.ndim == 2:
        x = x[None]
        if mask is not None:
            mask = mask[None]

    out = []
    for x_ in x:
        if mask is not None:
            mask = cv2.erode(mask.astype(np.uint8), kernel, iterations=1).astype(bool)

        x_ = colorize_np(x_, cmap_name, mask, range, append_cbar, cbar_in_image)
        out.append(torch.from_numpy(x_).to(device).float())
    out = torch.stack(out).squeeze(0)
    return out


class PointCloudViewer:
    def __init__(
        self,
        model,
        state_args,
        pc_list,
        color_list,
        conf_list,
        cam_dict,
        image_mask=None,
        edge_color_list=None,
        device="cpu",
        port=8080,
        show_camera=True,
        vis_threshold=1,
        size=512
    ):
        self.model = model
        self.size=size
        self.state_args = state_args
        self.server = viser.ViserServer(port=port)
        self.server.set_up_direction("-y")
        self.device = device
        self.conf_list = conf_list
        self.vis_threshold = vis_threshold
        self.tt = lambda x: torch.from_numpy(x).float().to(device)
        self.pcs, self.all_steps = self.read_data(
            pc_list, color_list, conf_list, edge_color_list
        )
        self.cam_dict = cam_dict
        self.num_frames = len(self.all_steps)
        self.image_mask = image_mask
        self.show_camera = show_camera
        self.on_replay = False
        self.vis_pts_list = []
        self.traj_list = []
        self.orig_img_list = [x[0] for x in color_list]
        self.via_points = []

        gui_reset_up = self.server.gui.add_button(
            "Reset up direction",
            hint="Set the camera control 'up' direction to the current camera's 'up'.",
        )

        @gui_reset_up.on_click
        def _(event: viser.GuiEvent) -> None:
            client = event.client
            assert client is not None
            client.camera.up_direction = tf.SO3(client.camera.wxyz) @ np.array(
                [0.0, -1.0, 0.0]
            )

        button3 = self.server.gui.add_button("4D (Only Show Current Frame)")
        button4 = self.server.gui.add_button("3D (Show All Frames)")
        self.is_render = False
        self.fourd = False

        @button3.on_click
        def _(event: viser.GuiEvent) -> None:
            self.fourd = True

        @button4.on_click
        def _(event: viser.GuiEvent) -> None:
            self.fourd = False

        self.focal_slider = self.server.add_gui_slider(
            "Focal Length",
            min=0.1,
            max=99999,
            step=1,
            initial_value=533,
        )

        self.psize_slider = self.server.add_gui_slider(
            "Point Size",
            min=0.0001,
            max=0.1,
            step=0.0001,
            initial_value=0.0005,
        )
        self.camsize_slider = self.server.add_gui_slider(
            "Camera Size",
            min=0.01,
            max=0.5,
            step=0.01,
            initial_value=0.1,
        )

        self.pc_handles = []
        self.cam_handles = []

        @self.psize_slider.on_update
        def _(_) -> None:
            for handle in self.pc_handles:
                handle.point_size = self.psize_slider.value

        @self.camsize_slider.on_update
        def _(_) -> None:
            for handle in self.cam_handles:
                handle.scale = self.camsize_slider.value
                handle.line_thickness = 0.03 * handle.scale

        self.server.on_client_connect(self._connect_client)

    def get_camera_state(self, client: viser.ClientHandle) -> CameraState:
        camera = client.camera
        c2w = np.concatenate(
            [
                np.concatenate(
                    [tf.SO3(camera.wxyz).as_matrix(), camera.position[:, None]], 1
                ),
                [[0, 0, 0, 1]],
            ],
            0,
        )
        return CameraState(
            fov=camera.fov,
            aspect=camera.aspect,
            c2w=c2w,
        )

    @staticmethod
    def generate_pseudo_intrinsics(h, w):
        focal = (h**2 + w**2) ** 0.5
        return np.array([[focal, 0, w // 2], [0, focal, h // 2], [0, 0, 1]]).astype(
            np.float32
        )

    def get_ray_map(self, c2w, h, w, intrinsics=None):
        if intrinsics is None:
            intrinsics = self.generate_pseudo_intrinsics(h, w)
        i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
        grid = np.stack([i, j, np.ones_like(i)], axis=-1)
        ro = c2w[:3, 3]
        rd = np.linalg.inv(intrinsics) @ grid.reshape(-1, 3).T
        rd = (c2w @ np.vstack([rd, np.ones_like(rd[0])])).T[:, :3].reshape(h, w, 3)
        rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True)
        ro = np.broadcast_to(ro, (h, w, 3))
        ray_map = np.concatenate([ro, rd], axis=-1)
        return ray_map

    def set_camera_loc(camera, pose, K):
        """
        pose: 4x4 matrix
        K: 3x3 matrix
        """
        fx, fy = K[0, 0], K[1, 1]
        cx, cy = K[0, 2], K[1, 2]
        aspect = float(cx) / float(cy)
        fov = 2 * np.arctan(2 * cx / fx)
        wxyz_xyz = tf.SE3.from_matrix(pose).wxyz_xyz
        wxyz = wxyz_xyz[:4]
        xyz = wxyz_xyz[4:]
        camera.wxyz = wxyz
        camera.position = xyz
        camera.fov = fov
        camera.aspect = aspect

    def _connect_client(self, client: viser.ClientHandle):
        from src.dust3r.inference import inference_step
        from src.dust3r.utils.geometry import geotrf

        wxyz_panel = client.gui.add_text("wxyz:", f"{client.camera.wxyz}")
        position_panel = client.gui.add_text("position:", f"{client.camera.position}")
        fov_panel = client.gui.add_text(
            "fov:", f"{2 * np.arctan(self.size/self.focal_slider.value) * 180 / np.pi}"
        )
        aspect_panel = client.gui.add_text("aspect:", "1.0")

        @client.camera.on_update
        def _(_: viser.CameraHandle):
            with self.server.atomic():
                wxyz_panel.value = f"{client.camera.wxyz}"
                position_panel.value = f"{client.camera.position}"
                fov_panel.value = (
                    f"{2 * np.arctan(self.size/self.focal_slider.value) * 180 / np.pi}"
                )
                aspect_panel.value = "1.0"

        gui_set_current_camera = client.gui.add_button(
            "Set Current Camera to Infer Raymap"
        )

        @gui_set_current_camera.on_click
        def _(_) -> None:
            try:
                cam = self.get_camera_state(client)
                cam.fov = 2 * np.arctan(self.size / self.focal_slider.value)
                cam.aspect = (512 / 384) if self.size==512 else 1.0
                pose = cam.c2w
                if self.size == 512:
                    intrins = self.generate_pseudo_intrinsics(384, 512)
                    raymap = torch.from_numpy(self.get_ray_map(pose, 384, 512, intrins))[
                        None
                    ].float()
                else:
                    intrins = self.generate_pseudo_intrinsics(224, 224)
                    raymap = torch.from_numpy(self.get_ray_map(pose, 224, 224, intrins))[
                        None
                    ].float()
                
                
                view = {
                    "img": torch.full((1, 3, 384, 512), torch.nan) if self.size==512 else torch.full((1, 3, 224, 224), torch.nan),
                    "ray_map": raymap,
                    "true_shape": torch.from_numpy(np.int32([raymap.shape[1:-1]])),
                    "idx": self.num_frames + 1,
                    "instance": str(self.num_frames + 1),
                    "camera_pose": torch.from_numpy(np.eye(4).astype(np.float32)).unsqueeze(
                        0
                    ),
                    "img_mask": torch.tensor(False).unsqueeze(0),
                    "ray_mask": torch.tensor(True).unsqueeze(0),
                    "update": torch.tensor(False).unsqueeze(0),
                    "reset": torch.tensor(False).unsqueeze(0),
                }
                print("Start Inference Raymap")
                output = inference_step(
                    view, self.state_args[-1], self.model, device=self.device
                )
                print("Finish Inference Raymap")
                pts3ds = output["pred"]["pts3d_in_self_view"].cpu().numpy()
                pts3ds = geotrf(pose[None], pts3ds)
                colors = 0.5 * (output["pred"]["rgb"].cpu().numpy() + 1.0)
                depthmap = output["pred"]["pts3d_in_self_view"].cpu().numpy()[0][..., -1]
                conf = output["pred"]["conf"].cpu().numpy()
                disp = 1.0 / depthmap
                pts3ds, colors = self.parse_pc_data(pts3ds, colors, set_border_color=True)
                mask = (conf > 1.0).reshape(-1)
                self.num_frames += 1
                self.pc_handles.append(
                    self.server.add_point_cloud(
                        name=f"/frames/{self.num_frames-1}/pred_pts",
                        points=pts3ds[mask],
                        colors=colors[mask],
                        point_size=0.005,
                    )
                )

                self.server.add_camera_frustum(
                    name=f"/frames/{self.num_frames-1}/camera",
                    fov=cam.fov,
                    aspect=cam.aspect,
                    wxyz=client.camera.wxyz,
                    position=client.camera.position,
                    scale=0.1,
                    color=[64, 179, 230],
                )
                print("Adding new pointcloud: ", pts3ds.shape)
            except Exception as e:
                print(e)

    @staticmethod
    def set_color_border(image, border_width=5, color=[1, 0, 0]):

        image[:border_width, :, 0] = color[0]  # Red channel
        image[:border_width, :, 1] = color[1]  # Green channel
        image[:border_width, :, 2] = color[2]  # Blue channel
        image[-border_width:, :, 0] = color[0]
        image[-border_width:, :, 1] = color[1]
        image[-border_width:, :, 2] = color[2]

        image[:, :border_width, 0] = color[0]
        image[:, :border_width, 1] = color[1]
        image[:, :border_width, 2] = color[2]
        image[:, -border_width:, 0] = color[0]
        image[:, -border_width:, 1] = color[1]
        image[:, -border_width:, 2] = color[2]

        return image

    def read_data(self, pc_list, color_list, conf_list, edge_color_list=None):
        pcs = {}
        step_list = []
        for i, pc in enumerate(pc_list):
            step = i
            pcs.update(
                {
                    step: {
                        "pc": pc,
                        "color": color_list[i],
                        "conf": conf_list[i],
                        "edge_color": (
                            None if edge_color_list[i] is None else edge_color_list[i]
                        ),
                    }
                }
            )
            step_list.append(step)
        normalized_indices = (
            np.array(list(range(len(pc_list))))
            / np.array(list(range(len(pc_list)))).max()
        )
        cmap = cm.viridis
        self.camera_colors = cmap(normalized_indices)
        return pcs, step_list

    def parse_pc_data(
        self,
        pc,
        color,
        conf=None,
        edge_color=[0.251, 0.702, 0.902],
        set_border_color=False,
    ):

        pred_pts = pc.reshape(-1, 3)  # [N, 3]

        if set_border_color and edge_color is not None:
            color = self.set_color_border(color[0], color=edge_color)
        if np.isnan(color).any():

            color = np.zeros((pred_pts.shape[0], 3))
            color[:, 2] = 1
        else:
            color = color.reshape(-1, 3)
        if conf is not None:
            conf = conf[0].reshape(-1)
            pred_pts = pred_pts[conf > self.vis_threshold]
            color = color[conf > self.vis_threshold]
        return pred_pts, color

    def add_pc(self, step):
        pc = self.pcs[step]["pc"]
        color = self.pcs[step]["color"]
        conf = self.pcs[step]["conf"]
        edge_color = self.pcs[step].get("edge_color", None)

        pred_pts, color = self.parse_pc_data(
            pc, color, conf, edge_color, set_border_color=True
        )

        self.vis_pts_list.append(pred_pts)
        self.pc_handles.append(
            self.server.add_point_cloud(
                name=f"/frames/{step}/pred_pts",
                points=pred_pts,
                colors=color,
                point_size=0.0005,
            )
        )

    def add_camera(self, step):
        cam = self.cam_dict
        focal = cam["focal"][step]
        pp = cam["pp"][step]
        R = cam["R"][step]
        t = cam["t"][step]

        q = tf.SO3.from_matrix(R).wxyz
        fov = 2 * np.arctan(pp[0] / focal)
        aspect = pp[0] / pp[1]
        self.traj_list.append((q, t))
        self.cam_handles.append(
            self.server.add_camera_frustum(
                name=f"/frames/{step}/camera",
                fov=fov,
                aspect=aspect,
                wxyz=q,
                position=t,
                scale=0.1,
                color=(50, 205, 50),
            )
        )

    def animate(self):
        with self.server.add_gui_folder("Playback"):
            gui_timestep = self.server.add_gui_slider(
                "Train Step",
                min=0,
                max=self.num_frames - 1,
                step=1,
                initial_value=0,
                disabled=False,
            )
            gui_next_frame = self.server.add_gui_button("Next Step", disabled=False)
            gui_prev_frame = self.server.add_gui_button("Prev Step", disabled=False)
            gui_playing = self.server.add_gui_checkbox("Playing", False)
            gui_framerate = self.server.add_gui_slider(
                "FPS", min=1, max=60, step=0.1, initial_value=1
            )
            gui_framerate_options = self.server.add_gui_button_group(
                "FPS options", ("10", "20", "30", "60")
            )

        @gui_next_frame.on_click
        def _(_) -> None:
            gui_timestep.value = (gui_timestep.value + 1) % self.num_frames

        @gui_prev_frame.on_click
        def _(_) -> None:
            gui_timestep.value = (gui_timestep.value - 1) % self.num_frames

        @gui_playing.on_update
        def _(_) -> None:
            gui_timestep.disabled = gui_playing.value
            gui_next_frame.disabled = gui_playing.value
            gui_prev_frame.disabled = gui_playing.value

        @gui_framerate_options.on_click
        def _(_) -> None:
            gui_framerate.value = int(gui_framerate_options.value)

        prev_timestep = gui_timestep.value

        @gui_timestep.on_update
        def _(_) -> None:
            nonlocal prev_timestep
            current_timestep = gui_timestep.value
            with self.server.atomic():
                self.frame_nodes[current_timestep].visible = True
                self.frame_nodes[prev_timestep].visible = False
            prev_timestep = current_timestep
            self.server.flush()  # Optional!

        self.server.add_frame(
            "/frames",
            show_axes=False,
        )
        self.frame_nodes = []
        for i in range(self.num_frames):
            step = self.all_steps[i]
            self.frame_nodes.append(
                self.server.add_frame(
                    f"/frames/{step}",
                    show_axes=False,
                )
            )
            self.add_pc(step)
            if self.show_camera:
                self.add_camera(step)

        prev_timestep = gui_timestep.value
        while True:
            if self.on_replay:
                pass
            else:
                if gui_playing.value:
                    gui_timestep.value = (gui_timestep.value + 1) % self.num_frames

                for i, frame_node in enumerate(self.frame_nodes):
                    frame_node.visible = (
                        i <= gui_timestep.value
                        if not self.fourd
                        else i == gui_timestep.value
                    )

            time.sleep(1.0 / gui_framerate.value)

    def run(self):
        self.animate()
        while True:
            time.sleep(10.0)