Spaces:
Running
on
L4
Running
on
L4
File size: 24,895 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
import torch
import os
from matplotlib.figure import Figure
import matplotlib.pyplot as plt
from matplotlib.backends.backend_agg import FigureCanvasAgg
import matplotlib as mpl
import cv2
import numpy as np
import matplotlib.cm as cm
import viser
import viser.transforms as tf
import time
import trimesh
import dataclasses
from scipy.spatial.transform import Rotation
from src.dust3r.viz import (
add_scene_cam,
CAM_COLORS,
OPENGL,
pts3d_to_trimesh,
cat_meshes,
)
def todevice(batch, device, callback=None, non_blocking=False):
"""Transfer some variables to another device (i.e. GPU, CPU:torch, CPU:numpy).
batch: list, tuple, dict of tensors or other things
device: pytorch device or 'numpy'
callback: function that would be called on every sub-elements.
"""
if callback:
batch = callback(batch)
if isinstance(batch, dict):
return {k: todevice(v, device) for k, v in batch.items()}
if isinstance(batch, (tuple, list)):
return type(batch)(todevice(x, device) for x in batch)
x = batch
if device == "numpy":
if isinstance(x, torch.Tensor):
x = x.detach().cpu().numpy()
elif x is not None:
if isinstance(x, np.ndarray):
x = torch.from_numpy(x)
if torch.is_tensor(x):
x = x.to(device, non_blocking=non_blocking)
return x
to_device = todevice # alias
def to_numpy(x):
return todevice(x, "numpy")
def segment_sky(image):
import cv2
from scipy import ndimage
# Convert to HSV
image = to_numpy(image)
if np.issubdtype(image.dtype, np.floating):
image = np.uint8(255 * image.clip(min=0, max=1))
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# Define range for blue color and create mask
lower_blue = np.array([0, 0, 100])
upper_blue = np.array([30, 255, 255])
mask = cv2.inRange(hsv, lower_blue, upper_blue).view(bool)
# add luminous gray
mask |= (hsv[:, :, 1] < 10) & (hsv[:, :, 2] > 150)
mask |= (hsv[:, :, 1] < 30) & (hsv[:, :, 2] > 180)
mask |= (hsv[:, :, 1] < 50) & (hsv[:, :, 2] > 220)
# Morphological operations
kernel = np.ones((5, 5), np.uint8)
mask2 = ndimage.binary_opening(mask, structure=kernel)
# keep only largest CC
_, labels, stats, _ = cv2.connectedComponentsWithStats(
mask2.view(np.uint8), connectivity=8
)
cc_sizes = stats[1:, cv2.CC_STAT_AREA]
order = cc_sizes.argsort()[::-1] # bigger first
i = 0
selection = []
while i < len(order) and cc_sizes[order[i]] > cc_sizes[order[0]] / 2:
selection.append(1 + order[i])
i += 1
mask3 = np.in1d(labels, selection).reshape(labels.shape)
# Apply mask
return torch.from_numpy(mask3)
def convert_scene_output_to_glb(
outdir,
imgs,
pts3d,
mask,
focals,
cams2world,
cam_size=0.05,
show_cam=True,
cam_color=None,
as_pointcloud=False,
transparent_cams=False,
silent=False,
save_name=None,
):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
if show_cam:
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(
scene,
pose_c2w,
camera_edge_color,
None if transparent_cams else imgs[i],
focals[i],
imsize=imgs[i].shape[1::-1],
screen_width=cam_size,
)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler("y", np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
if save_name is None:
save_name = "scene"
outfile = os.path.join(outdir, save_name + ".glb")
if not silent:
print("(exporting 3D scene to", outfile, ")")
scene.export(file_obj=outfile)
return outfile
@dataclasses.dataclass
class CameraState(object):
fov: float
aspect: float
c2w: np.ndarray
def get_K(self, img_wh):
W, H = img_wh
focal_length = H / 2.0 / np.tan(self.fov / 2.0)
K = np.array(
[
[focal_length, 0.0, W / 2.0],
[0.0, focal_length, H / 2.0],
[0.0, 0.0, 1.0],
]
)
return K
def get_vertical_colorbar(h, vmin, vmax, cmap_name="jet", label=None, cbar_precision=2):
"""
:param w: pixels
:param h: pixels
:param vmin: min value
:param vmax: max value
:param cmap_name:
:param label
:return:
"""
fig = Figure(figsize=(2, 8), dpi=100)
fig.subplots_adjust(right=1.5)
canvas = FigureCanvasAgg(fig)
ax = fig.add_subplot(111)
cmap = cm.get_cmap(cmap_name)
norm = mpl.colors.Normalize(vmin=vmin, vmax=vmax)
tick_cnt = 6
tick_loc = np.linspace(vmin, vmax, tick_cnt)
cb1 = mpl.colorbar.ColorbarBase(
ax, cmap=cmap, norm=norm, ticks=tick_loc, orientation="vertical"
)
tick_label = [str(np.round(x, cbar_precision)) for x in tick_loc]
if cbar_precision == 0:
tick_label = [x[:-2] for x in tick_label]
cb1.set_ticklabels(tick_label)
cb1.ax.tick_params(labelsize=18, rotation=0)
if label is not None:
cb1.set_label(label)
canvas.draw()
s, (width, height) = canvas.print_to_buffer()
im = np.frombuffer(s, np.uint8).reshape((height, width, 4))
im = im[:, :, :3].astype(np.float32) / 255.0
if h != im.shape[0]:
w = int(im.shape[1] / im.shape[0] * h)
im = cv2.resize(im, (w, h), interpolation=cv2.INTER_AREA)
return im
def colorize_np(
x,
cmap_name="jet",
mask=None,
range=None,
append_cbar=False,
cbar_in_image=False,
cbar_precision=2,
):
"""
turn a grayscale image into a color image
:param x: input grayscale, [H, W]
:param cmap_name: the colorization method
:param mask: the mask image, [H, W]
:param range: the range for scaling, automatic if None, [min, max]
:param append_cbar: if append the color bar
:param cbar_in_image: put the color bar inside the image to keep the output image the same size as the input image
:return: colorized image, [H, W]
"""
if range is not None:
vmin, vmax = range
elif mask is not None:
vmin = np.min(x[mask][np.nonzero(x[mask])])
vmax = np.max(x[mask])
x[np.logical_not(mask)] = vmin
else:
vmin, vmax = np.percentile(x, (1, 100))
vmax += 1e-6
x = np.clip(x, vmin, vmax)
x = (x - vmin) / (vmax - vmin)
cmap = cm.get_cmap(cmap_name)
x_new = cmap(x)[:, :, :3]
if mask is not None:
mask = np.float32(mask[:, :, np.newaxis])
x_new = x_new * mask + np.ones_like(x_new) * (1.0 - mask)
cbar = get_vertical_colorbar(
h=x.shape[0],
vmin=vmin,
vmax=vmax,
cmap_name=cmap_name,
cbar_precision=cbar_precision,
)
if append_cbar:
if cbar_in_image:
x_new[:, -cbar.shape[1] :, :] = cbar
else:
x_new = np.concatenate(
(x_new, np.zeros_like(x_new[:, :5, :]), cbar), axis=1
)
return x_new
else:
return x_new
def colorize(
x, cmap_name="jet", mask=None, range=None, append_cbar=False, cbar_in_image=False
):
"""
turn a grayscale image into a color image
:param x: torch.Tensor, grayscale image, [H, W] or [B, H, W]
:param mask: torch.Tensor or None, mask image, [H, W] or [B, H, W] or None
"""
device = x.device
x = x.cpu().numpy()
if mask is not None:
mask = mask.cpu().numpy() > 0.99
kernel = np.ones((3, 3), np.uint8)
if x.ndim == 2:
x = x[None]
if mask is not None:
mask = mask[None]
out = []
for x_ in x:
if mask is not None:
mask = cv2.erode(mask.astype(np.uint8), kernel, iterations=1).astype(bool)
x_ = colorize_np(x_, cmap_name, mask, range, append_cbar, cbar_in_image)
out.append(torch.from_numpy(x_).to(device).float())
out = torch.stack(out).squeeze(0)
return out
class PointCloudViewer:
def __init__(
self,
model,
state_args,
pc_list,
color_list,
conf_list,
cam_dict,
image_mask=None,
edge_color_list=None,
device="cpu",
port=8080,
show_camera=True,
vis_threshold=1,
size=512
):
self.model = model
self.size=size
self.state_args = state_args
self.server = viser.ViserServer(port=port)
self.server.set_up_direction("-y")
self.device = device
self.conf_list = conf_list
self.vis_threshold = vis_threshold
self.tt = lambda x: torch.from_numpy(x).float().to(device)
self.pcs, self.all_steps = self.read_data(
pc_list, color_list, conf_list, edge_color_list
)
self.cam_dict = cam_dict
self.num_frames = len(self.all_steps)
self.image_mask = image_mask
self.show_camera = show_camera
self.on_replay = False
self.vis_pts_list = []
self.traj_list = []
self.orig_img_list = [x[0] for x in color_list]
self.via_points = []
gui_reset_up = self.server.gui.add_button(
"Reset up direction",
hint="Set the camera control 'up' direction to the current camera's 'up'.",
)
@gui_reset_up.on_click
def _(event: viser.GuiEvent) -> None:
client = event.client
assert client is not None
client.camera.up_direction = tf.SO3(client.camera.wxyz) @ np.array(
[0.0, -1.0, 0.0]
)
button3 = self.server.gui.add_button("4D (Only Show Current Frame)")
button4 = self.server.gui.add_button("3D (Show All Frames)")
self.is_render = False
self.fourd = False
@button3.on_click
def _(event: viser.GuiEvent) -> None:
self.fourd = True
@button4.on_click
def _(event: viser.GuiEvent) -> None:
self.fourd = False
self.focal_slider = self.server.add_gui_slider(
"Focal Length",
min=0.1,
max=99999,
step=1,
initial_value=533,
)
self.psize_slider = self.server.add_gui_slider(
"Point Size",
min=0.0001,
max=0.1,
step=0.0001,
initial_value=0.0005,
)
self.camsize_slider = self.server.add_gui_slider(
"Camera Size",
min=0.01,
max=0.5,
step=0.01,
initial_value=0.1,
)
self.pc_handles = []
self.cam_handles = []
@self.psize_slider.on_update
def _(_) -> None:
for handle in self.pc_handles:
handle.point_size = self.psize_slider.value
@self.camsize_slider.on_update
def _(_) -> None:
for handle in self.cam_handles:
handle.scale = self.camsize_slider.value
handle.line_thickness = 0.03 * handle.scale
self.server.on_client_connect(self._connect_client)
def get_camera_state(self, client: viser.ClientHandle) -> CameraState:
camera = client.camera
c2w = np.concatenate(
[
np.concatenate(
[tf.SO3(camera.wxyz).as_matrix(), camera.position[:, None]], 1
),
[[0, 0, 0, 1]],
],
0,
)
return CameraState(
fov=camera.fov,
aspect=camera.aspect,
c2w=c2w,
)
@staticmethod
def generate_pseudo_intrinsics(h, w):
focal = (h**2 + w**2) ** 0.5
return np.array([[focal, 0, w // 2], [0, focal, h // 2], [0, 0, 1]]).astype(
np.float32
)
def get_ray_map(self, c2w, h, w, intrinsics=None):
if intrinsics is None:
intrinsics = self.generate_pseudo_intrinsics(h, w)
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing="xy")
grid = np.stack([i, j, np.ones_like(i)], axis=-1)
ro = c2w[:3, 3]
rd = np.linalg.inv(intrinsics) @ grid.reshape(-1, 3).T
rd = (c2w @ np.vstack([rd, np.ones_like(rd[0])])).T[:, :3].reshape(h, w, 3)
rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True)
ro = np.broadcast_to(ro, (h, w, 3))
ray_map = np.concatenate([ro, rd], axis=-1)
return ray_map
def set_camera_loc(camera, pose, K):
"""
pose: 4x4 matrix
K: 3x3 matrix
"""
fx, fy = K[0, 0], K[1, 1]
cx, cy = K[0, 2], K[1, 2]
aspect = float(cx) / float(cy)
fov = 2 * np.arctan(2 * cx / fx)
wxyz_xyz = tf.SE3.from_matrix(pose).wxyz_xyz
wxyz = wxyz_xyz[:4]
xyz = wxyz_xyz[4:]
camera.wxyz = wxyz
camera.position = xyz
camera.fov = fov
camera.aspect = aspect
def _connect_client(self, client: viser.ClientHandle):
from src.dust3r.inference import inference_step
from src.dust3r.utils.geometry import geotrf
wxyz_panel = client.gui.add_text("wxyz:", f"{client.camera.wxyz}")
position_panel = client.gui.add_text("position:", f"{client.camera.position}")
fov_panel = client.gui.add_text(
"fov:", f"{2 * np.arctan(self.size/self.focal_slider.value) * 180 / np.pi}"
)
aspect_panel = client.gui.add_text("aspect:", "1.0")
@client.camera.on_update
def _(_: viser.CameraHandle):
with self.server.atomic():
wxyz_panel.value = f"{client.camera.wxyz}"
position_panel.value = f"{client.camera.position}"
fov_panel.value = (
f"{2 * np.arctan(self.size/self.focal_slider.value) * 180 / np.pi}"
)
aspect_panel.value = "1.0"
gui_set_current_camera = client.gui.add_button(
"Set Current Camera to Infer Raymap"
)
@gui_set_current_camera.on_click
def _(_) -> None:
try:
cam = self.get_camera_state(client)
cam.fov = 2 * np.arctan(self.size / self.focal_slider.value)
cam.aspect = (512 / 384) if self.size==512 else 1.0
pose = cam.c2w
if self.size == 512:
intrins = self.generate_pseudo_intrinsics(384, 512)
raymap = torch.from_numpy(self.get_ray_map(pose, 384, 512, intrins))[
None
].float()
else:
intrins = self.generate_pseudo_intrinsics(224, 224)
raymap = torch.from_numpy(self.get_ray_map(pose, 224, 224, intrins))[
None
].float()
view = {
"img": torch.full((1, 3, 384, 512), torch.nan) if self.size==512 else torch.full((1, 3, 224, 224), torch.nan),
"ray_map": raymap,
"true_shape": torch.from_numpy(np.int32([raymap.shape[1:-1]])),
"idx": self.num_frames + 1,
"instance": str(self.num_frames + 1),
"camera_pose": torch.from_numpy(np.eye(4).astype(np.float32)).unsqueeze(
0
),
"img_mask": torch.tensor(False).unsqueeze(0),
"ray_mask": torch.tensor(True).unsqueeze(0),
"update": torch.tensor(False).unsqueeze(0),
"reset": torch.tensor(False).unsqueeze(0),
}
print("Start Inference Raymap")
output = inference_step(
view, self.state_args[-1], self.model, device=self.device
)
print("Finish Inference Raymap")
pts3ds = output["pred"]["pts3d_in_self_view"].cpu().numpy()
pts3ds = geotrf(pose[None], pts3ds)
colors = 0.5 * (output["pred"]["rgb"].cpu().numpy() + 1.0)
depthmap = output["pred"]["pts3d_in_self_view"].cpu().numpy()[0][..., -1]
conf = output["pred"]["conf"].cpu().numpy()
disp = 1.0 / depthmap
pts3ds, colors = self.parse_pc_data(pts3ds, colors, set_border_color=True)
mask = (conf > 1.0).reshape(-1)
self.num_frames += 1
self.pc_handles.append(
self.server.add_point_cloud(
name=f"/frames/{self.num_frames-1}/pred_pts",
points=pts3ds[mask],
colors=colors[mask],
point_size=0.005,
)
)
self.server.add_camera_frustum(
name=f"/frames/{self.num_frames-1}/camera",
fov=cam.fov,
aspect=cam.aspect,
wxyz=client.camera.wxyz,
position=client.camera.position,
scale=0.1,
color=[64, 179, 230],
)
print("Adding new pointcloud: ", pts3ds.shape)
except Exception as e:
print(e)
@staticmethod
def set_color_border(image, border_width=5, color=[1, 0, 0]):
image[:border_width, :, 0] = color[0] # Red channel
image[:border_width, :, 1] = color[1] # Green channel
image[:border_width, :, 2] = color[2] # Blue channel
image[-border_width:, :, 0] = color[0]
image[-border_width:, :, 1] = color[1]
image[-border_width:, :, 2] = color[2]
image[:, :border_width, 0] = color[0]
image[:, :border_width, 1] = color[1]
image[:, :border_width, 2] = color[2]
image[:, -border_width:, 0] = color[0]
image[:, -border_width:, 1] = color[1]
image[:, -border_width:, 2] = color[2]
return image
def read_data(self, pc_list, color_list, conf_list, edge_color_list=None):
pcs = {}
step_list = []
for i, pc in enumerate(pc_list):
step = i
pcs.update(
{
step: {
"pc": pc,
"color": color_list[i],
"conf": conf_list[i],
"edge_color": (
None if edge_color_list[i] is None else edge_color_list[i]
),
}
}
)
step_list.append(step)
normalized_indices = (
np.array(list(range(len(pc_list))))
/ np.array(list(range(len(pc_list)))).max()
)
cmap = cm.viridis
self.camera_colors = cmap(normalized_indices)
return pcs, step_list
def parse_pc_data(
self,
pc,
color,
conf=None,
edge_color=[0.251, 0.702, 0.902],
set_border_color=False,
):
pred_pts = pc.reshape(-1, 3) # [N, 3]
if set_border_color and edge_color is not None:
color = self.set_color_border(color[0], color=edge_color)
if np.isnan(color).any():
color = np.zeros((pred_pts.shape[0], 3))
color[:, 2] = 1
else:
color = color.reshape(-1, 3)
if conf is not None:
conf = conf[0].reshape(-1)
pred_pts = pred_pts[conf > self.vis_threshold]
color = color[conf > self.vis_threshold]
return pred_pts, color
def add_pc(self, step):
pc = self.pcs[step]["pc"]
color = self.pcs[step]["color"]
conf = self.pcs[step]["conf"]
edge_color = self.pcs[step].get("edge_color", None)
pred_pts, color = self.parse_pc_data(
pc, color, conf, edge_color, set_border_color=True
)
self.vis_pts_list.append(pred_pts)
self.pc_handles.append(
self.server.add_point_cloud(
name=f"/frames/{step}/pred_pts",
points=pred_pts,
colors=color,
point_size=0.0005,
)
)
def add_camera(self, step):
cam = self.cam_dict
focal = cam["focal"][step]
pp = cam["pp"][step]
R = cam["R"][step]
t = cam["t"][step]
q = tf.SO3.from_matrix(R).wxyz
fov = 2 * np.arctan(pp[0] / focal)
aspect = pp[0] / pp[1]
self.traj_list.append((q, t))
self.cam_handles.append(
self.server.add_camera_frustum(
name=f"/frames/{step}/camera",
fov=fov,
aspect=aspect,
wxyz=q,
position=t,
scale=0.1,
color=(50, 205, 50),
)
)
def animate(self):
with self.server.add_gui_folder("Playback"):
gui_timestep = self.server.add_gui_slider(
"Train Step",
min=0,
max=self.num_frames - 1,
step=1,
initial_value=0,
disabled=False,
)
gui_next_frame = self.server.add_gui_button("Next Step", disabled=False)
gui_prev_frame = self.server.add_gui_button("Prev Step", disabled=False)
gui_playing = self.server.add_gui_checkbox("Playing", False)
gui_framerate = self.server.add_gui_slider(
"FPS", min=1, max=60, step=0.1, initial_value=1
)
gui_framerate_options = self.server.add_gui_button_group(
"FPS options", ("10", "20", "30", "60")
)
@gui_next_frame.on_click
def _(_) -> None:
gui_timestep.value = (gui_timestep.value + 1) % self.num_frames
@gui_prev_frame.on_click
def _(_) -> None:
gui_timestep.value = (gui_timestep.value - 1) % self.num_frames
@gui_playing.on_update
def _(_) -> None:
gui_timestep.disabled = gui_playing.value
gui_next_frame.disabled = gui_playing.value
gui_prev_frame.disabled = gui_playing.value
@gui_framerate_options.on_click
def _(_) -> None:
gui_framerate.value = int(gui_framerate_options.value)
prev_timestep = gui_timestep.value
@gui_timestep.on_update
def _(_) -> None:
nonlocal prev_timestep
current_timestep = gui_timestep.value
with self.server.atomic():
self.frame_nodes[current_timestep].visible = True
self.frame_nodes[prev_timestep].visible = False
prev_timestep = current_timestep
self.server.flush() # Optional!
self.server.add_frame(
"/frames",
show_axes=False,
)
self.frame_nodes = []
for i in range(self.num_frames):
step = self.all_steps[i]
self.frame_nodes.append(
self.server.add_frame(
f"/frames/{step}",
show_axes=False,
)
)
self.add_pc(step)
if self.show_camera:
self.add_camera(step)
prev_timestep = gui_timestep.value
while True:
if self.on_replay:
pass
else:
if gui_playing.value:
gui_timestep.value = (gui_timestep.value + 1) % self.num_frames
for i, frame_node in enumerate(self.frame_nodes):
frame_node.visible = (
i <= gui_timestep.value
if not self.fourd
else i == gui_timestep.value
)
time.sleep(1.0 / gui_framerate.value)
def run(self):
self.animate()
while True:
time.sleep(10.0)
|