Spaces:
Running
on
L4
Running
on
L4
File size: 14,519 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
#!/usr/bin/env python3
"""
3D Point Cloud Inference and Visualization Script
This script performs inference using the ARCroco3DStereo model and visualizes the
resulting 3D point clouds with the PointCloudViewer. Use the command-line arguments
to adjust parameters such as the model checkpoint path, image sequence directory,
image size, device, etc.
Usage:
python demo_ga.py [--model_path MODEL_PATH] [--seq_path SEQ_PATH] [--size IMG_SIZE]
[--device DEVICE] [--vis_threshold VIS_THRESHOLD] [--output_dir OUT_DIR]
Example:
python demo_ga.py --model_path src/cut3r_512_dpt_4_64.pth \
--seq_path examples/001 --device cuda --size 512
"""
import os
import numpy as np
import torch
import time
import glob
import random
import cv2
import argparse
import tempfile
import shutil
from copy import deepcopy
from add_ckpt_path import add_path_to_dust3r
import imageio.v2 as iio
from PIL import Image
# Set random seed for reproducibility.
random.seed(42)
def forward_backward_permutations(n, interval=1):
original = list(range(n))
result = [original]
for i in range(1, n):
new_list = original[i::interval]
result.append(new_list)
new_list = original[: i + 1][::-interval]
result.append(new_list)
return result
def listify(elems):
return [x for e in elems for x in e]
def collate_with_cat(whatever, lists=False):
if isinstance(whatever, dict):
return {k: collate_with_cat(vals, lists=lists) for k, vals in whatever.items()}
elif isinstance(whatever, (tuple, list)):
if len(whatever) == 0:
return whatever
elem = whatever[0]
T = type(whatever)
if elem is None:
return None
if isinstance(elem, (bool, float, int, str)):
return whatever
if isinstance(elem, tuple):
return T(collate_with_cat(x, lists=lists) for x in zip(*whatever))
if isinstance(elem, dict):
return {
k: collate_with_cat([e[k] for e in whatever], lists=lists) for k in elem
}
if isinstance(elem, torch.Tensor):
return listify(whatever) if lists else torch.cat(whatever)
if isinstance(elem, np.ndarray):
return (
listify(whatever)
if lists
else torch.cat([torch.from_numpy(x) for x in whatever])
)
# otherwise, we just chain lists
return sum(whatever, T())
def parse_args():
"""Parse command-line arguments."""
parser = argparse.ArgumentParser(
description="Run 3D point cloud inference and visualization using ARCroco3DStereo."
)
parser.add_argument(
"--model_path",
type=str,
default="src/cut3r_512_dpt_4_64.pth",
help="Path to the pretrained model checkpoint.",
)
parser.add_argument(
"--seq_path",
type=str,
default="",
help="Path to the directory containing the image sequence.",
)
parser.add_argument(
"--device",
type=str,
default="cuda",
help="Device to run inference on (e.g., 'cuda' or 'cpu').",
)
parser.add_argument(
"--size",
type=int,
default="512",
help="Shape that input images will be rescaled to; if using 224+linear model, choose 224 otherwise 512",
)
parser.add_argument(
"--vis_threshold",
type=float,
default=1.5,
help="Visualization threshold for the point cloud viewer. Ranging from 1 to INF",
)
parser.add_argument(
"--output_dir",
type=str,
default="./demo_tmp",
help="value for tempfile.tempdir",
)
return parser.parse_args()
def prepare_input(
img_paths, img_mask, size, raymaps=None, raymap_mask=None, revisit=1, update=True
):
"""
Prepare input views for inference from a list of image paths.
Args:
img_paths (list): List of image file paths.
img_mask (list of bool): Flags indicating valid images.
size (int): Target image size.
raymaps (list, optional): List of ray maps.
raymap_mask (list, optional): Flags indicating valid ray maps.
revisit (int): How many times to revisit each view.
update (bool): Whether to update the state on revisits.
Returns:
list: A list of view dictionaries.
"""
# Import image loader (delayed import needed after adding ckpt path).
from src.dust3r.utils.image import load_images
images = load_images(img_paths, size=size)
views = []
num_views = len(images)
all_permutations = forward_backward_permutations(num_views, interval=2)
for permute in all_permutations:
_views = []
for idx, i in enumerate(permute):
view = {
"img": images[i]["img"],
"ray_map": torch.full(
(
images[i]["img"].shape[0],
6,
images[i]["img"].shape[-2],
images[i]["img"].shape[-1],
),
torch.nan,
),
"true_shape": torch.from_numpy(images[i]["true_shape"]),
"idx": i,
"instance": str(i),
"camera_pose": torch.from_numpy(np.eye(4).astype(np.float32)).unsqueeze(
0
),
"img_mask": torch.tensor(True).unsqueeze(0),
"ray_mask": torch.tensor(False).unsqueeze(0),
"update": torch.tensor(True).unsqueeze(0),
"reset": torch.tensor(False).unsqueeze(0),
}
_views.append(view)
views.append(_views)
return views
def prepare_output(output, outdir, device):
from cloud_opt.dust3r_opt import global_aligner, GlobalAlignerMode
with torch.enable_grad():
mode = GlobalAlignerMode.PointCloudOptimizer
scene = global_aligner(
output,
device=device,
mode=mode,
verbose=True,
)
lr = 0.01
loss = scene.compute_global_alignment(
init="mst",
niter=300,
schedule="linear",
lr=lr,
)
scene.clean_pointcloud()
pts3d = scene.get_pts3d()
depths = scene.get_depthmaps()
poses = scene.get_im_poses()
focals = scene.get_focals()
pps = scene.get_principal_points()
confs = scene.get_conf(mode="none")
pts3ds_other = [pts.detach().cpu().unsqueeze(0) for pts in pts3d]
depths = [d.detach().cpu().unsqueeze(0) for d in depths]
colors = [torch.from_numpy(img).unsqueeze(0) for img in scene.imgs]
confs = [conf.detach().cpu().unsqueeze(0) for conf in confs]
cam_dict = {
"focal": focals.detach().cpu().numpy(),
"pp": pps.detach().cpu().numpy(),
"R": poses.detach().cpu().numpy()[..., :3, :3],
"t": poses.detach().cpu().numpy()[..., :3, 3],
}
depths_tosave = torch.cat(depths) # B, H, W
pts3ds_other_tosave = torch.cat(pts3ds_other) # B, H, W, 3
conf_self_tosave = torch.cat(confs) # B, H, W
colors_tosave = torch.cat(colors) # [B, H, W, 3]
cam2world_tosave = poses.detach().cpu() # B, 4, 4
intrinsics_tosave = (
torch.eye(3).unsqueeze(0).repeat(cam2world_tosave.shape[0], 1, 1)
) # B, 3, 3
intrinsics_tosave[:, 0, 0] = focals[:, 0].detach().cpu()
intrinsics_tosave[:, 1, 1] = focals[:, 0].detach().cpu()
intrinsics_tosave[:, 0, 2] = pps[:, 0].detach().cpu()
intrinsics_tosave[:, 1, 2] = pps[:, 1].detach().cpu()
os.makedirs(os.path.join(outdir, "depth"), exist_ok=True)
os.makedirs(os.path.join(outdir, "conf"), exist_ok=True)
os.makedirs(os.path.join(outdir, "color"), exist_ok=True)
os.makedirs(os.path.join(outdir, "camera"), exist_ok=True)
for f_id in range(len(depths_tosave)):
depth = depths_tosave[f_id].cpu().numpy()
conf = conf_self_tosave[f_id].cpu().numpy()
color = colors_tosave[f_id].cpu().numpy()
c2w = cam2world_tosave[f_id].cpu().numpy()
intrins = intrinsics_tosave[f_id].cpu().numpy()
np.save(os.path.join(outdir, "depth", f"{f_id:06d}.npy"), depth)
np.save(os.path.join(outdir, "conf", f"{f_id:06d}.npy"), conf)
iio.imwrite(
os.path.join(outdir, "color", f"{f_id:06d}.png"),
(color * 255).astype(np.uint8),
)
np.savez(
os.path.join(outdir, "camera", f"{f_id:06d}.npz"),
pose=c2w,
intrinsics=intrins,
)
return pts3ds_other, colors, confs, cam_dict
def parse_seq_path(p):
if os.path.isdir(p):
img_paths = sorted(glob.glob(f"{p}/*"))
tmpdirname = None
else:
cap = cv2.VideoCapture(p)
if not cap.isOpened():
raise ValueError(f"Error opening video file {p}")
video_fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if video_fps == 0:
cap.release()
raise ValueError(f"Error: Video FPS is 0 for {p}")
frame_interval = 1
frame_indices = list(range(0, total_frames, frame_interval))
print(
f" - Video FPS: {video_fps}, Frame Interval: {frame_interval}, Total Frames to Read: {len(frame_indices)}"
)
img_paths = []
tmpdirname = tempfile.mkdtemp()
for i in frame_indices:
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
if not ret:
break
frame_path = os.path.join(tmpdirname, f"frame_{i}.jpg")
cv2.imwrite(frame_path, frame)
img_paths.append(frame_path)
cap.release()
return img_paths, tmpdirname
def run_inference(args):
"""
Execute the full inference and visualization pipeline.
Args:
args: Parsed command-line arguments.
"""
# Set up the computation device.
device = args.device
if device == "cuda" and not torch.cuda.is_available():
print("CUDA not available. Switching to CPU.")
device = "cpu"
# Add the checkpoint path (required for model imports in the dust3r package).
add_path_to_dust3r(args.model_path)
# Import model and inference functions after adding the ckpt path.
from src.dust3r.inference import inference, inference_recurrent
from src.dust3r.model import ARCroco3DStereo
from viser_utils import PointCloudViewer
# Prepare image file paths.
img_paths, tmpdirname = parse_seq_path(args.seq_path)
if not img_paths:
print(f"No images found in {args.seq_path}. Please verify the path.")
return
print(f"Found {len(img_paths)} images in {args.seq_path}.")
img_mask = [True] * len(img_paths)
# Prepare input views.
print("Preparing input views...")
views = prepare_input(
img_paths=img_paths,
img_mask=img_mask,
size=args.size,
revisit=1,
update=True,
)
if tmpdirname is not None:
shutil.rmtree(tmpdirname)
# Load and prepare the model.
print(f"Loading model from {args.model_path}...")
model = ARCroco3DStereo.from_pretrained(args.model_path).to(device)
model.eval()
# Run inference.
print("Running inference...")
start_time = time.time()
output = {
"view1": [],
"view2": [],
"pred1": [],
"pred2": [],
}
edges = []
for _views in views:
outputs, state_args = inference(_views, model, device)
for view_id in range(1, len(outputs["views"])):
output["view1"].append(outputs["views"][0])
output["view2"].append(outputs["views"][view_id])
output["pred1"].append(outputs["pred"][0])
output["pred2"].append(outputs["pred"][view_id])
edges.append((outputs["views"][0]["idx"], outputs["views"][view_id]["idx"]))
list_of_tuples = edges
sorted_indices = sorted(
range(len(list_of_tuples)),
key=lambda x: (
list_of_tuples[x][0] > list_of_tuples[x][1], # Grouping condition
(
list_of_tuples[x][1]
if list_of_tuples[x][0] > list_of_tuples[x][1]
else list_of_tuples[x][0]
), # First sort key
(
list_of_tuples[x][0]
if list_of_tuples[x][0] > list_of_tuples[x][1]
else list_of_tuples[x][1]
), # Second sort key
),
)
new_output = {
"view1": [],
"view2": [],
"pred1": [],
"pred2": [],
}
for i in sorted_indices:
new_output["view1"].append(output["view1"][i])
new_output["view2"].append(output["view2"][i])
new_output["pred1"].append(output["pred1"][i])
new_output["pred2"].append(output["pred2"][i])
output["view1"] = collate_with_cat(new_output["view1"])
output["view2"] = collate_with_cat(new_output["view2"])
output["pred1"] = collate_with_cat(new_output["pred1"])
output["pred2"] = collate_with_cat(new_output["pred2"])
total_time = time.time() - start_time
per_frame_time = total_time / len(views)
print(
f"Inference completed in {total_time:.2f} seconds (average {per_frame_time:.2f} s per frame)."
)
# Process outputs for visualization.
print("Preparing output for visualization...")
pts3ds_other, colors, conf, cam_dict = prepare_output(
output, args.output_dir, device
)
# Convert tensors to numpy arrays for visualization.
pts3ds_to_vis = [p.cpu().numpy() for p in pts3ds_other]
colors_to_vis = [c.cpu().numpy() for c in colors]
edge_colors = [None] * len(pts3ds_to_vis)
# Create and run the point cloud viewer.
print("Launching point cloud viewer...")
viewer = PointCloudViewer(
model,
state_args,
pts3ds_to_vis,
colors_to_vis,
conf,
cam_dict,
device=device,
edge_color_list=edge_colors,
show_camera=True,
vis_threshold=args.vis_threshold,
size=args.size,
)
viewer.run()
def main():
args = parse_args()
if not args.seq_path:
print(
"No inputs found! Please use our gradio demo if you would like to iteractively upload inputs."
)
return
else:
run_inference(args)
if __name__ == "__main__":
main()
|