Spaces:
Running
on
L4
Running
on
L4
File size: 17,832 Bytes
2df809d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 |
import numpy as np
import torch
from PIL import Image
import argparse
import os
import json
from typing import List, Optional, Tuple
import scipy.spatial.transform as spt
from omegaconf import OmegaConf
from modeling.pipeline import VMemPipeline
from utils import load_img_and_K, transform_img_and_K, get_default_intrinsics
class Navigator:
"""
Navigator class for moving through a 3D scene with a virtual camera.
Provides methods to move forward and turn left/right, generating new camera poses
and rendering frames using VMemPipeline.
"""
def __init__(self, pipeline: VMemPipeline, step_size: float = 0.1, num_interpolation_frames: int = 4):
"""
Initialize the Navigator.
Args:
pipeline: The VMemPipeline used for rendering frames
step_size: The distance to move forward with each step
num_interpolation_frames: Number of frames to generate for each movement
"""
self.pipeline = pipeline
self.step_size = step_size
self.current_pose = None
self.current_K = None
self.frames = []
self.num_interpolation_frames = num_interpolation_frames
self.pose_history = [] # Store history of camera poses
def initialize(self, image, initial_pose, initial_K):
"""
Initialize the navigator with an image and camera parameters.
Uses the pipeline's initialize method to set up the state.
Args:
image: Initial image tensor
initial_pose: Initial camera pose (4x4 camera-to-world matrix)
initial_K: Initial camera intrinsics matrix
Returns:
The initial frame as PIL Image
"""
self.current_pose = initial_pose
self.current_K = initial_K
# Use the pipeline's initialize method
initial_frame = self.pipeline.initialize(image, initial_pose, initial_K)
self.frames = [initial_frame]
# Save the initial pose
self.pose_history.append({
"file_path": f"images/frame_001.png",
"transform_matrix": initial_pose.tolist() if isinstance(initial_pose, np.ndarray) else initial_pose
})
return initial_frame
def initialize_pipeline(self, image_tensor, initial_pose, initial_K):
"""
Initialize the pipeline with the first image and camera pose.
Deprecated: Use initialize() instead.
Args:
image_tensor: Initial image tensor [1, C, H, W]
initial_pose: Initial camera pose (4x4 camera-to-world matrix)
initial_K: Initial camera intrinsics matrix
Returns:
The generated frame as PIL Image
"""
return self.initialize(image_tensor, initial_pose, initial_K)
def initialize_with_image(self, image, initial_pose, initial_K):
"""
Initialize the navigator with an image and camera parameters.
Deprecated: Use initialize() instead.
Args:
image: Initial image tensor
initial_pose: Initial camera pose (4x4 camera-to-world matrix)
initial_K: Initial camera intrinsics matrix
Returns:
The generated frame as PIL Image
"""
return self.initialize(image, initial_pose, initial_K)
def _interpolate_poses(self, start_pose, end_pose, num_frames):
"""
Interpolate between two camera poses.
Args:
start_pose: Starting camera pose (4x4 matrix)
end_pose: Ending camera pose (4x4 matrix)
num_frames: Number of interpolation frames to generate (including end pose)
Returns:
List of interpolated camera poses
"""
# Extract rotation matrices
start_R = start_pose[:3, :3]
end_R = end_pose[:3, :3]
# Extract translation vectors
start_t = start_pose[:3, 3]
end_t = end_pose[:3, 3]
# Convert rotation matrices to quaternions for smooth interpolation
start_quat = spt.Rotation.from_matrix(start_R).as_quat()
end_quat = spt.Rotation.from_matrix(end_R).as_quat()
# Generate interpolated poses
interpolated_poses = []
for i in range(num_frames):
# Interpolation factor (0 to 1)
t = (i + 1) / num_frames
# Interpolate translation
interp_t = (1 - t) * start_t + t * end_t
# Interpolate rotation (SLERP)
interp_quat = spt.Slerp(
np.array([0, 1]),
spt.Rotation.from_quat([start_quat, end_quat])
)(t).as_matrix()
# Create interpolated pose matrix
interp_pose = np.eye(4)
interp_pose[:3, :3] = interp_quat
interp_pose[:3, 3] = interp_t
interpolated_poses.append(interp_pose)
return interpolated_poses
def move_backward(self, num_steps: int = 1) -> List[Image.Image]:
"""
Move the camera backward along its viewing direction with smooth interpolation.
Args:
num_steps: Number of steps to move forward
Returns:
List of generated frames as PIL Images
"""
if self.current_pose is None:
print("Navigator not initialized. Call initialize first.")
return None
# Get the current forward direction from the camera pose
forward_dir = self.current_pose[:3, 2]
# Create the target pose
target_pose = self.current_pose.copy()
target_pose[:3, 3] += forward_dir * self.step_size * num_steps
# Interpolate between current pose and target pose
interpolated_poses = self._interpolate_poses(
self.current_pose,
target_pose,
self.num_interpolation_frames
)
# Create list of intrinsics (same for all frames)
interpolated_Ks = [self.current_K] * len(interpolated_poses)
# Generate frames for interpolated poses
new_frames = self.pipeline.generate_trajectory_frames(interpolated_poses,
interpolated_Ks,
use_non_maximum_suppression=False)
# Update the current pose to the final pose
self.current_pose = interpolated_poses[-1]
self.frames.extend(new_frames)
# Save the final pose
self.pose_history.append({
"file_path": f"images/frame_{len(self.pose_history) + 1:03d}.png",
"transform_matrix": self.current_pose.tolist() if isinstance(self.current_pose, np.ndarray) else self.current_pose
})
return new_frames
def move_forward(self, num_steps: int = 1) -> List[Image.Image]:
"""
Move the camera forward along its viewing direction with smooth interpolation.
Args:
num_steps: Number of steps to move forward
Returns:
List of generated frames as PIL Images
"""
if self.current_pose is None:
print("Navigator not initialized. Call initialize first.")
return None
# Get the current forward direction from the camera pose
forward_dir = self.current_pose[:3, 2]
# Create the target pose
target_pose = self.current_pose.copy()
target_pose[:3, 3] -= forward_dir * self.step_size * num_steps
# Interpolate between current pose and target pose
interpolated_poses = self._interpolate_poses(
self.current_pose,
target_pose,
self.num_interpolation_frames
)
# Create list of intrinsics (same for all frames)
interpolated_Ks = [self.current_K] * len(interpolated_poses)
# Generate frames for interpolated poses
new_frames = self.pipeline.generate_trajectory_frames(interpolated_poses,
interpolated_Ks,
use_non_maximum_suppression=False)
# Update the current pose to the final pose
self.current_pose = interpolated_poses[-1]
self.frames.extend(new_frames)
# Save the final pose
self.pose_history.append({
"file_path": f"images/frame_{len(self.pose_history) + 1:03d}.png",
"transform_matrix": self.current_pose.tolist() if isinstance(self.current_pose, np.ndarray) else self.current_pose
})
return new_frames
def turn_left(self, degrees: float = 3) -> List[Image.Image]:
"""
Rotate the camera left around the up vector with smooth interpolation.
Args:
degrees: Rotation angle in degrees
Returns:
List of generated frames as PIL Images
"""
return self._turn(degrees)
def turn_right(self, degrees: float = 3) -> List[Image.Image]:
"""
Rotate the camera right around the up vector with smooth interpolation.
Args:
degrees: Rotation angle in degrees
Returns:
List of generated frames as PIL Images
"""
return self._turn(-degrees)
def _turn(self, degrees: float) -> List[Image.Image]:
"""
Helper method to turn the camera by the specified angle with smooth interpolation.
Positive angles turn left, negative angles turn right.
Args:
degrees: Rotation angle in degrees
Returns:
List of generated frames as PIL Images
"""
if self.current_pose is None:
print("Navigator not initialized. Call initialize first.")
return None
# Convert degrees to radians
angle_rad = np.radians(degrees)
# Create rotation matrix around the up axis (assuming Y is up)
rotation = np.array([
[np.cos(angle_rad), 0, np.sin(angle_rad), 0],
[0, 1, 0, 0],
[-np.sin(angle_rad), 0, np.cos(angle_rad), 0],
[0, 0, 0, 1]
])
# Apply rotation to the current pose
position = self.current_pose[:3, 3].copy()
rotation_matrix = self.current_pose[:3, :3].copy()
# Create the target pose
target_pose = np.eye(4)
target_pose[:3, :3] = rotation[:3, :3] @ rotation_matrix
target_pose[:3, 3] = position
# Interpolate between current pose and target pose
interpolated_poses = self._interpolate_poses(
self.current_pose,
target_pose,
self.num_interpolation_frames
)
# Create list of intrinsics (same for all frames)
interpolated_Ks = [self.current_K] * len(interpolated_poses)
# Generate frames for interpolated poses
new_frames = self.pipeline.generate_trajectory_frames(interpolated_poses, interpolated_Ks)
# Update the current pose to the final pose
self.current_pose = interpolated_poses[-1]
self.frames.extend(new_frames)
# Save the final pose
self.pose_history.append({
"file_path": f"images/frame_{len(self.pose_history) + 1:03d}.png",
"transform_matrix": self.current_pose.tolist() if isinstance(self.current_pose, np.ndarray) else self.current_pose
})
return new_frames
def navigate(self, commands: List[str]) -> List[List[Image.Image]]:
"""
Execute a series of navigation commands and return the generated frames.
Args:
commands: List of commands ('w', 'a', 'd', 'q')
Returns:
List of lists of generated frames, one list per command
"""
if self.current_pose is None:
print("Navigator not initialized. Call initialize first.")
return []
all_generated_frames = []
for idx, cmd in enumerate(commands):
if cmd == 'w':
frames = self.move_forward()
if frames:
all_generated_frames.extend(frames)
elif cmd == 's':
# self.pipeline.temporal_only = True
frames = self.move_backward()
if frames:
all_generated_frames.extend(frames)
elif cmd == 'a':
frames = self.turn_left(4)
if frames:
all_generated_frames.extend(frames)
elif cmd == 'd':
frames = self.turn_right(4)
if frames:
all_generated_frames.extend(frames)
return all_generated_frames
def undo(self) -> bool:
"""
Undo the last navigation step by removing the most recent frames and poses.
Uses the pipeline's undo_latest_move method to handle the frame removal.
Returns:
bool: True if undo was successful, False otherwise
"""
# Check if we have enough poses to undo
if len(self.pose_history) <= 1:
print("Cannot undo: at initial position")
return False
# Use pipeline's undo function to remove the last batch of frames
success = self.pipeline.undo_latest_move()
if success:
# Remove the last pose from history
self.pose_history.pop()
# Set current pose to the previous pose
prev_pose_data = self.pose_history[-1]
self.current_pose = np.array(prev_pose_data["transform_matrix"])
# Remove frames from the frames list
frames_to_remove = min(self.pipeline.config.model.target_num_frames, len(self.frames) - 1)
for _ in range(frames_to_remove):
if len(self.frames) > 1: # Keep at least the initial frame
self.frames.pop()
print(f"Successfully undid last movement. Now at position {len(self.pose_history)}")
return True
return False
def save_camera_poses(self, output_path):
"""
Save the camera pose history to a JSON file in the format
required for NeRF training.
Args:
output_path: Path to save the JSON file
"""
# Create the output directory if it doesn't exist
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# Format the data as required
transforms_data = {
"frames": self.pose_history
}
# Save to JSON file
with open(output_path, 'w') as f:
json.dump(transforms_data, f, indent=4)
print(f"Camera poses saved to {output_path}")
def main():
parser = argparse.ArgumentParser(description="Interactive navigation in VMem")
parser.add_argument("--config", type=str, default="configs/inference/inference.yaml", help="Path to config file")
parser.add_argument("--step_size", type=float, default=0.1, help="Forward step size")
parser.add_argument("--interpolation_frames", type=int, default=4, help="Number of frames for each movement")
parser.add_argument("--commands", type=str, default="a,a,a,a,a,d,d,d,d,d,d,w,w,w,w,a,a,a,a,d,d,d,d,s,s,s,s", help="Comma-separated commands to execute (w,a,s,d,c,q) where c is circulate")
# parser.add_argument("--commands", type=str, default="d,d,d,d,w,w,w,d,d,d,d,d,a,a,a,a,a,s,s", help="Comma-separated commands to execute (w,a,s,d,c,q) where c is circulate")
parser.add_argument("--output_dir", type=str, default="./visualization/navigation_frames", help="Directory to save output frames")
parser.add_argument("--save_poses", type=str, default="./visualization/transforms.json", help="Path to save camera poses in NeRF format")
args = parser.parse_args()
# Load configuration
config = OmegaConf.load(args.config)
# Initialize the pipeline
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
pipeline = VMemPipeline(config, device=device)
# Create the navigator
navigator = Navigator(pipeline, step_size=args.step_size, num_interpolation_frames=args.interpolation_frames)
# Load episode data
frame_path = "test_samples/oxford.jpeg"
image, _ = load_img_and_K(frame_path, None, K=None, device=device)
image, _ = transform_img_and_K(image, (config.model.height, config.model.width), mode="crop", K=None)
ori_K = np.array(get_default_intrinsics()[0])
initial_pose = np.eye(4)
# Initialize the navigator with the first frame using pipeline's initialize method
initial_frame = navigator.initialize(image, initial_pose, ori_K)
# Create output directory if needed
if args.output_dir:
os.makedirs(args.output_dir, exist_ok=True)
initial_frame.save(os.path.join(args.output_dir, "initial.png"))
# If commands are provided, execute them in sequence
commands = args.commands.split(',')
all_frames_lists = navigator.navigate(commands)
# Save camera poses
if args.save_poses:
navigator.save_camera_poses(args.save_poses)
if __name__ == "__main__":
main()
|