Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,54 +18,13 @@ from notebook_utils import device_widget
|
|
| 18 |
# Initialize model language options
|
| 19 |
model_languages = list(SUPPORTED_LLM_MODELS)
|
| 20 |
|
| 21 |
-
# Gradio components for selecting model language and model ID
|
| 22 |
-
model_language = gr.Dropdown(
|
| 23 |
-
choices=model_languages,
|
| 24 |
-
value=model_languages[0],
|
| 25 |
-
label="Model Language"
|
| 26 |
-
)
|
| 27 |
-
|
| 28 |
-
# Gradio dropdown for selecting model ID based on language
|
| 29 |
def update_model_id(model_language_value):
|
| 30 |
model_ids = list(SUPPORTED_LLM_MODELS[model_language_value])
|
| 31 |
return model_ids[0], gr.update(choices=model_ids)
|
| 32 |
|
| 33 |
-
model_id = gr.Dropdown(
|
| 34 |
-
choices=[], # will be dynamically populated
|
| 35 |
-
label="Model",
|
| 36 |
-
value=None
|
| 37 |
-
)
|
| 38 |
-
|
| 39 |
-
model_language.change(update_model_id, inputs=model_language, outputs=[model_id])
|
| 40 |
-
|
| 41 |
-
# Gradio checkbox for preparing INT4 model
|
| 42 |
-
prepare_int4_model = gr.Checkbox(
|
| 43 |
-
value=True,
|
| 44 |
-
label="Prepare INT4 Model"
|
| 45 |
-
)
|
| 46 |
-
|
| 47 |
-
# Gradio checkbox for enabling AWQ (depends on INT4 checkbox)
|
| 48 |
-
enable_awq = gr.Checkbox(
|
| 49 |
-
value=False,
|
| 50 |
-
label="Enable AWQ",
|
| 51 |
-
visible=False
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
-
# Device selection widget (e.g., CPU or GPU)
|
| 55 |
-
device = device_widget("CPU", exclude=["NPU"])
|
| 56 |
-
|
| 57 |
-
# Model directory and setup based on selections
|
| 58 |
-
def get_model_path(model_language_value, model_id_value):
|
| 59 |
-
model_configuration = SUPPORTED_LLM_MODELS[model_language_value][model_id_value]
|
| 60 |
-
pt_model_id = model_configuration["model_id"]
|
| 61 |
-
pt_model_name = model_id_value.split("-")[0]
|
| 62 |
-
int4_model_dir = Path(model_id_value) / "INT4_compressed_weights"
|
| 63 |
-
return model_configuration, int4_model_dir, pt_model_name
|
| 64 |
-
|
| 65 |
# Function to download the model if not already present
|
| 66 |
def download_model_if_needed(model_language_value, model_id_value):
|
| 67 |
model_configuration, int4_model_dir, pt_model_name = get_model_path(model_language_value, model_id_value)
|
| 68 |
-
|
| 69 |
int4_weights = int4_model_dir / "openvino_model.bin"
|
| 70 |
|
| 71 |
if not int4_weights.exists():
|
|
@@ -75,14 +34,12 @@ def download_model_if_needed(model_language_value, model_id_value):
|
|
| 75 |
# r = requests.get(model_configuration["model_url"])
|
| 76 |
# with open(int4_weights, "wb") as f:
|
| 77 |
# f.write(r.content)
|
| 78 |
-
|
| 79 |
return int4_model_dir
|
| 80 |
|
| 81 |
# Load the model
|
| 82 |
def load_model(model_language_value, model_id_value):
|
| 83 |
int4_model_dir = download_model_if_needed(model_language_value, model_id_value)
|
| 84 |
-
|
| 85 |
-
# Load the OpenVINO model
|
| 86 |
ov_config = {hints.performance_mode(): hints.PerformanceMode.LATENCY, streams.num(): "1", props.cache_dir(): ""}
|
| 87 |
core = ov.Core()
|
| 88 |
|
|
@@ -103,18 +60,9 @@ def load_model(model_language_value, model_id_value):
|
|
| 103 |
# Gradio interface function for generating text responses
|
| 104 |
def generate_response(history, temperature, top_p, top_k, repetition_penalty, model_language_value, model_id_value):
|
| 105 |
tok, ov_model, model_configuration = load_model(model_language_value, model_id_value)
|
| 106 |
-
|
| 107 |
-
# Convert history to tokens
|
| 108 |
-
def convert_history_to_token(history):
|
| 109 |
-
# (Your history conversion logic here)
|
| 110 |
-
# Use model_configuration to determine the exact format
|
| 111 |
-
input_tokens = tok(" ".join([msg[0] for msg in history]), return_tensors="pt").input_ids
|
| 112 |
-
return input_tokens
|
| 113 |
-
|
| 114 |
-
input_ids = convert_history_to_token(history)
|
| 115 |
streamer = gr.Textbox.update()
|
| 116 |
|
| 117 |
-
# Adjust generation kwargs
|
| 118 |
generate_kwargs = dict(
|
| 119 |
input_ids=input_ids,
|
| 120 |
max_new_tokens=256,
|
|
@@ -125,49 +73,72 @@ def generate_response(history, temperature, top_p, top_k, repetition_penalty, mo
|
|
| 125 |
streamer=streamer
|
| 126 |
)
|
| 127 |
|
| 128 |
-
# Start streaming response
|
| 129 |
event = Event()
|
| 130 |
-
|
| 131 |
def generate_and_signal_complete():
|
| 132 |
ov_model.generate(**generate_kwargs)
|
| 133 |
event.set()
|
| 134 |
-
|
| 135 |
t1 = Thread(target=generate_and_signal_complete)
|
| 136 |
t1.start()
|
| 137 |
-
|
| 138 |
-
# Collect generated text
|
| 139 |
partial_text = ""
|
| 140 |
for new_text in streamer:
|
| 141 |
partial_text += new_text
|
| 142 |
history[-1][1] = partial_text
|
| 143 |
yield history
|
| 144 |
|
| 145 |
-
# Gradio UI
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
#
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
if __name__ == "__main__":
|
| 173 |
-
iface.launch(
|
|
|
|
| 18 |
# Initialize model language options
|
| 19 |
model_languages = list(SUPPORTED_LLM_MODELS)
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def update_model_id(model_language_value):
|
| 22 |
model_ids = list(SUPPORTED_LLM_MODELS[model_language_value])
|
| 23 |
return model_ids[0], gr.update(choices=model_ids)
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
# Function to download the model if not already present
|
| 26 |
def download_model_if_needed(model_language_value, model_id_value):
|
| 27 |
model_configuration, int4_model_dir, pt_model_name = get_model_path(model_language_value, model_id_value)
|
|
|
|
| 28 |
int4_weights = int4_model_dir / "openvino_model.bin"
|
| 29 |
|
| 30 |
if not int4_weights.exists():
|
|
|
|
| 34 |
# r = requests.get(model_configuration["model_url"])
|
| 35 |
# with open(int4_weights, "wb") as f:
|
| 36 |
# f.write(r.content)
|
| 37 |
+
|
| 38 |
return int4_model_dir
|
| 39 |
|
| 40 |
# Load the model
|
| 41 |
def load_model(model_language_value, model_id_value):
|
| 42 |
int4_model_dir = download_model_if_needed(model_language_value, model_id_value)
|
|
|
|
|
|
|
| 43 |
ov_config = {hints.performance_mode(): hints.PerformanceMode.LATENCY, streams.num(): "1", props.cache_dir(): ""}
|
| 44 |
core = ov.Core()
|
| 45 |
|
|
|
|
| 60 |
# Gradio interface function for generating text responses
|
| 61 |
def generate_response(history, temperature, top_p, top_k, repetition_penalty, model_language_value, model_id_value):
|
| 62 |
tok, ov_model, model_configuration = load_model(model_language_value, model_id_value)
|
| 63 |
+
input_ids = tok(" ".join([msg[0] for msg in history]), return_tensors="pt").input_ids
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
streamer = gr.Textbox.update()
|
| 65 |
|
|
|
|
| 66 |
generate_kwargs = dict(
|
| 67 |
input_ids=input_ids,
|
| 68 |
max_new_tokens=256,
|
|
|
|
| 73 |
streamer=streamer
|
| 74 |
)
|
| 75 |
|
|
|
|
| 76 |
event = Event()
|
|
|
|
| 77 |
def generate_and_signal_complete():
|
| 78 |
ov_model.generate(**generate_kwargs)
|
| 79 |
event.set()
|
| 80 |
+
|
| 81 |
t1 = Thread(target=generate_and_signal_complete)
|
| 82 |
t1.start()
|
| 83 |
+
|
|
|
|
| 84 |
partial_text = ""
|
| 85 |
for new_text in streamer:
|
| 86 |
partial_text += new_text
|
| 87 |
history[-1][1] = partial_text
|
| 88 |
yield history
|
| 89 |
|
| 90 |
+
# Gradio UI within a Blocks context
|
| 91 |
+
with gr.Blocks() as iface:
|
| 92 |
+
model_language = gr.Dropdown(
|
| 93 |
+
choices=model_languages,
|
| 94 |
+
value=model_languages[0],
|
| 95 |
+
label="Model Language"
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
model_id = gr.Dropdown(
|
| 99 |
+
choices=[], # dynamically populated
|
| 100 |
+
label="Model",
|
| 101 |
+
value=None
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
model_language.change(update_model_id, inputs=model_language, outputs=[model_id])
|
| 105 |
+
|
| 106 |
+
prepare_int4_model = gr.Checkbox(
|
| 107 |
+
value=True,
|
| 108 |
+
label="Prepare INT4 Model"
|
| 109 |
+
)
|
| 110 |
+
enable_awq = gr.Checkbox(
|
| 111 |
+
value=False,
|
| 112 |
+
label="Enable AWQ",
|
| 113 |
+
visible=False
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
device = device_widget("CPU", exclude=["NPU"])
|
| 117 |
+
|
| 118 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature")
|
| 119 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
| 120 |
+
top_k = gr.Slider(minimum=0, maximum=50, value=50, label="Top K")
|
| 121 |
+
repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, value=1.1, label="Repetition Penalty")
|
| 122 |
+
|
| 123 |
+
history = gr.State([])
|
| 124 |
+
|
| 125 |
+
iface_interface = gr.Interface(
|
| 126 |
+
fn=generate_response,
|
| 127 |
+
inputs=[
|
| 128 |
+
history,
|
| 129 |
+
temperature,
|
| 130 |
+
top_p,
|
| 131 |
+
top_k,
|
| 132 |
+
repetition_penalty,
|
| 133 |
+
model_language,
|
| 134 |
+
model_id
|
| 135 |
+
],
|
| 136 |
+
outputs=[gr.Textbox(label="Conversation History")],
|
| 137 |
+
live=True,
|
| 138 |
+
title="OpenVINO Chatbot"
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
iface_interface.launch(debug=True, share=True, server_name="0.0.0.0", server_port=7860)
|
| 142 |
+
|
| 143 |
if __name__ == "__main__":
|
| 144 |
+
iface.launch()
|