Spaces:
Sleeping
Sleeping
Commit
·
2b48bef
1
Parent(s):
dfb7b55
Add demo
Browse files- app.py +348 -0
- packages.txt +1 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Copyright $today.year LY Corporation
|
| 3 |
+
|
| 4 |
+
LY Corporation licenses this file to you under the Apache License,
|
| 5 |
+
version 2.0 (the "License"); you may not use this file except in compliance
|
| 6 |
+
with the License. You may obtain a copy of the License at:
|
| 7 |
+
|
| 8 |
+
https://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
|
| 10 |
+
Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
| 12 |
+
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
| 13 |
+
License for the specific language governing permissions and limitations
|
| 14 |
+
under the License.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
import os
|
| 18 |
+
import subprocess
|
| 19 |
+
|
| 20 |
+
import ffmpeg
|
| 21 |
+
import gradio as gr
|
| 22 |
+
import pandas as pd
|
| 23 |
+
import torch
|
| 24 |
+
from lighthouse.models import *
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
|
| 27 |
+
# use GPU if available
|
| 28 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
+
MODEL_NAMES = ["cg_detr", "moment_detr", "eatr", "qd_detr", "tr_detr", "uvcom"]
|
| 30 |
+
FEATURES = ["clip"]
|
| 31 |
+
TOPK_MOMENT = 5
|
| 32 |
+
TOPK_HIGHLIGHT = 5
|
| 33 |
+
|
| 34 |
+
"""
|
| 35 |
+
Helper functions
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def load_pretrained_weights():
|
| 40 |
+
file_urls = []
|
| 41 |
+
for model_name in MODEL_NAMES:
|
| 42 |
+
for feature in FEATURES:
|
| 43 |
+
file_urls.append(
|
| 44 |
+
"https://zenodo.org/records/13960580/files/{}_{}_qvhighlight.ckpt".format(
|
| 45 |
+
feature, model_name
|
| 46 |
+
)
|
| 47 |
+
)
|
| 48 |
+
for file_url in tqdm(file_urls):
|
| 49 |
+
if not os.path.exists("gradio_demo/weights/" + os.path.basename(file_url)):
|
| 50 |
+
command = "wget -P gradio_demo/weights/ {}".format(file_url)
|
| 51 |
+
subprocess.run(command, shell=True)
|
| 52 |
+
|
| 53 |
+
# Slowfast weights
|
| 54 |
+
if not os.path.exists("SLOWFAST_8x8_R50.pkl"):
|
| 55 |
+
subprocess.run(
|
| 56 |
+
"wget https://dl.fbaipublicfiles.com/pyslowfast/model_zoo/kinetics400/SLOWFAST_8x8_R50.pkl",
|
| 57 |
+
shell=True,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
# PANNs weights
|
| 61 |
+
if not os.path.exists("Cnn14_mAP=0.431.pth"):
|
| 62 |
+
subprocess.run(
|
| 63 |
+
"wget https://zenodo.org/record/3987831/files/Cnn14_mAP%3D0.431.pth",
|
| 64 |
+
shell=True,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
return file_urls
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def flatten(array2d):
|
| 71 |
+
list1d = []
|
| 72 |
+
for elem in array2d:
|
| 73 |
+
list1d += elem
|
| 74 |
+
return list1d
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
"""
|
| 78 |
+
Model initialization
|
| 79 |
+
"""
|
| 80 |
+
load_pretrained_weights()
|
| 81 |
+
model = CGDETRPredictor(
|
| 82 |
+
"gradio_demo/weights/clip_cg_detr_qvhighlight.ckpt",
|
| 83 |
+
device=device,
|
| 84 |
+
feature_name="clip",
|
| 85 |
+
slowfast_path=None,
|
| 86 |
+
pann_path=None,
|
| 87 |
+
)
|
| 88 |
+
loaded_video = None
|
| 89 |
+
loaded_video_path = None
|
| 90 |
+
|
| 91 |
+
js_codes = [
|
| 92 |
+
"""() => {{
|
| 93 |
+
let moment_text = document.getElementById('result_{}').textContent;
|
| 94 |
+
var replaced_text = moment_text.replace(/moment..../, '').replace(/\ Score.*/, '');
|
| 95 |
+
let start_end = JSON.parse(replaced_text);
|
| 96 |
+
document.getElementsByTagName("video")[0].currentTime = start_end[0];
|
| 97 |
+
document.getElementsByTagName("video")[0].play();
|
| 98 |
+
}}""".format(i)
|
| 99 |
+
for i in range(TOPK_MOMENT)
|
| 100 |
+
]
|
| 101 |
+
|
| 102 |
+
"""
|
| 103 |
+
Gradio functions
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def video_upload(video):
|
| 108 |
+
global loaded_video, loaded_video_path
|
| 109 |
+
if video is None:
|
| 110 |
+
loaded_video = None
|
| 111 |
+
loaded_video_path = video
|
| 112 |
+
yield gr.update(value="Removed the video", visible=True)
|
| 113 |
+
else:
|
| 114 |
+
yield gr.update(
|
| 115 |
+
value="Processing the video. Wait for a minute...", visible=True
|
| 116 |
+
)
|
| 117 |
+
loaded_video = model.encode_video(video)
|
| 118 |
+
loaded_video_path = video
|
| 119 |
+
yield gr.update(value="Finished video processing!", visible=True)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def model_load(radio, video):
|
| 123 |
+
global loaded_video, loaded_video_path
|
| 124 |
+
if radio is not None:
|
| 125 |
+
loading_msg = "Loading new model. Wait for a minute..."
|
| 126 |
+
yield (
|
| 127 |
+
gr.update(value=loading_msg, visible=True),
|
| 128 |
+
gr.update(value=loading_msg, visible=True),
|
| 129 |
+
)
|
| 130 |
+
global model
|
| 131 |
+
feature, model_name = radio.split("+")
|
| 132 |
+
feature, model_name = feature.strip(), model_name.strip()
|
| 133 |
+
|
| 134 |
+
if model_name == "moment_detr":
|
| 135 |
+
model_class = MomentDETRPredictor
|
| 136 |
+
elif model_name == "qd_detr":
|
| 137 |
+
model_class = QDDETRPredictor
|
| 138 |
+
elif model_name == "eatr":
|
| 139 |
+
model_class = EaTRPredictor
|
| 140 |
+
elif model_name == "tr_detr":
|
| 141 |
+
model_class = TRDETRPredictor
|
| 142 |
+
elif model_name == "uvcom":
|
| 143 |
+
model_class = UVCOMPredictor
|
| 144 |
+
elif model_name == "cg_detr":
|
| 145 |
+
model_class = CGDETRPredictor
|
| 146 |
+
else:
|
| 147 |
+
raise gr.Error("Select from the models")
|
| 148 |
+
|
| 149 |
+
model = model_class(
|
| 150 |
+
"gradio_demo/weights/{}_{}_qvhighlight.ckpt".format(feature, model_name),
|
| 151 |
+
device=device,
|
| 152 |
+
feature_name="{}".format(feature),
|
| 153 |
+
slowfast_path="SLOWFAST_8x8_R50.pkl",
|
| 154 |
+
pann_path="Cnn14_mAP=0.431.pth",
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
load_finished_msg = "Model loaded: {}".format(radio)
|
| 158 |
+
encode_process_msg = (
|
| 159 |
+
"Processing the video. Wait for a minute..." if video is not None else ""
|
| 160 |
+
)
|
| 161 |
+
yield (
|
| 162 |
+
gr.update(value=load_finished_msg, visible=True),
|
| 163 |
+
gr.update(value=encode_process_msg, visible=True),
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
if video is not None:
|
| 167 |
+
loaded_video = model.encode_video(video)
|
| 168 |
+
loaded_video_path = video
|
| 169 |
+
encode_finished_msg = "Finished video processing!"
|
| 170 |
+
yield (
|
| 171 |
+
gr.update(value=load_finished_msg, visible=True),
|
| 172 |
+
gr.update(value=encode_finished_msg, visible=True),
|
| 173 |
+
)
|
| 174 |
+
else:
|
| 175 |
+
loaded_video = None
|
| 176 |
+
loaded_video_path = None
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def predict(textbox, line, gallery):
|
| 180 |
+
global loaded_video, loaded_video_path
|
| 181 |
+
if loaded_video is None:
|
| 182 |
+
raise gr.Error(
|
| 183 |
+
"Upload the video before pushing the `Retrieve moment & highlight detection` button."
|
| 184 |
+
)
|
| 185 |
+
else:
|
| 186 |
+
prediction = model.predict(textbox, loaded_video)
|
| 187 |
+
|
| 188 |
+
mr_results = prediction["pred_relevant_windows"]
|
| 189 |
+
hl_results = prediction["pred_saliency_scores"]
|
| 190 |
+
|
| 191 |
+
buttons = []
|
| 192 |
+
for i, pred in enumerate(mr_results[:TOPK_MOMENT]):
|
| 193 |
+
buttons.append(
|
| 194 |
+
gr.Button(
|
| 195 |
+
value="moment {}: [{}, {}] Score: {}".format(
|
| 196 |
+
i + 1, pred[0], pred[1], pred[2]
|
| 197 |
+
),
|
| 198 |
+
visible=True,
|
| 199 |
+
)
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
# Visualize the HD score
|
| 203 |
+
seconds = [model._vision_encoder._clip_len * i for i in range(len(hl_results))]
|
| 204 |
+
hl_data = pd.DataFrame({"second": seconds, "saliency_score": hl_results})
|
| 205 |
+
min_val, max_val = min(hl_results), max(hl_results) + 1
|
| 206 |
+
min_x, max_x = min(seconds), max(seconds)
|
| 207 |
+
line = gr.LinePlot(
|
| 208 |
+
value=hl_data,
|
| 209 |
+
x="second",
|
| 210 |
+
y="saliency_score",
|
| 211 |
+
visible=True,
|
| 212 |
+
y_lim=[min_val, max_val],
|
| 213 |
+
x_lim=[min_x, max_x],
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
# Show highlight frames
|
| 217 |
+
n_largest_df = hl_data.nlargest(columns="saliency_score", n=TOPK_HIGHLIGHT)
|
| 218 |
+
highlighted_seconds = n_largest_df.second.tolist()
|
| 219 |
+
highlighted_scores = n_largest_df.saliency_score.tolist()
|
| 220 |
+
|
| 221 |
+
output_image_paths = []
|
| 222 |
+
for i, (second, score) in enumerate(
|
| 223 |
+
zip(highlighted_seconds, highlighted_scores)
|
| 224 |
+
):
|
| 225 |
+
output_path = "gradio_demo/highlight_frames/highlight_{}.png".format(i)
|
| 226 |
+
(
|
| 227 |
+
ffmpeg.input(loaded_video_path, ss=second)
|
| 228 |
+
.output(output_path, vframes=1, qscale=2)
|
| 229 |
+
.global_args("-loglevel", "quiet", "-y")
|
| 230 |
+
.run()
|
| 231 |
+
)
|
| 232 |
+
output_image_paths.append(
|
| 233 |
+
(output_path, "Highlight: {} - score: {:.02f}".format(i + 1, score))
|
| 234 |
+
)
|
| 235 |
+
gallery = gr.Gallery(
|
| 236 |
+
value=output_image_paths,
|
| 237 |
+
label="gradio",
|
| 238 |
+
columns=5,
|
| 239 |
+
show_download_button=True,
|
| 240 |
+
visible=True,
|
| 241 |
+
)
|
| 242 |
+
return buttons + [line, gallery]
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def main():
|
| 246 |
+
title = """# Moment Retrieval & Highlight Detection Demo"""
|
| 247 |
+
|
| 248 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 249 |
+
gr.Markdown(title)
|
| 250 |
+
|
| 251 |
+
with gr.Row():
|
| 252 |
+
with gr.Column():
|
| 253 |
+
with gr.Group():
|
| 254 |
+
gr.Markdown("## Model selection")
|
| 255 |
+
radio_list = flatten(
|
| 256 |
+
[
|
| 257 |
+
[
|
| 258 |
+
"{} + {}".format(feature, model_name)
|
| 259 |
+
for model_name in MODEL_NAMES
|
| 260 |
+
]
|
| 261 |
+
for feature in FEATURES
|
| 262 |
+
]
|
| 263 |
+
)
|
| 264 |
+
radio = gr.Radio(
|
| 265 |
+
radio_list,
|
| 266 |
+
label="models",
|
| 267 |
+
value="clip + cg_detr",
|
| 268 |
+
info="Which model do you want to use?",
|
| 269 |
+
)
|
| 270 |
+
load_status_text = gr.Textbox(
|
| 271 |
+
label="Model load status", value="Model loaded: clip + cg_detr"
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
with gr.Group():
|
| 275 |
+
gr.Markdown("## Video and query")
|
| 276 |
+
video_input = gr.Video(elem_id="video", height=600)
|
| 277 |
+
output = gr.Textbox(label="Video processing progress")
|
| 278 |
+
query_input = gr.Textbox(label="query")
|
| 279 |
+
button = gr.Button(
|
| 280 |
+
"Retrieve moment & highlight detection", variant="primary"
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
with gr.Column():
|
| 284 |
+
with gr.Group():
|
| 285 |
+
gr.Markdown("## Retrieved moments")
|
| 286 |
+
|
| 287 |
+
button_1 = gr.Button(
|
| 288 |
+
value="moment 1", visible=False, elem_id="result_0"
|
| 289 |
+
)
|
| 290 |
+
button_2 = gr.Button(
|
| 291 |
+
value="moment 2", visible=False, elem_id="result_1"
|
| 292 |
+
)
|
| 293 |
+
button_3 = gr.Button(
|
| 294 |
+
value="moment 3", visible=False, elem_id="result_2"
|
| 295 |
+
)
|
| 296 |
+
button_4 = gr.Button(
|
| 297 |
+
value="moment 4", visible=False, elem_id="result_3"
|
| 298 |
+
)
|
| 299 |
+
button_5 = gr.Button(
|
| 300 |
+
value="moment 5", visible=False, elem_id="result_4"
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
button_1.click(None, None, None, js=js_codes[0])
|
| 304 |
+
button_2.click(None, None, None, js=js_codes[1])
|
| 305 |
+
button_3.click(None, None, None, js=js_codes[2])
|
| 306 |
+
button_4.click(None, None, None, js=js_codes[3])
|
| 307 |
+
button_5.click(None, None, None, js=js_codes[4])
|
| 308 |
+
|
| 309 |
+
# dummy
|
| 310 |
+
with gr.Group():
|
| 311 |
+
gr.Markdown("## Saliency score")
|
| 312 |
+
line = gr.LinePlot(
|
| 313 |
+
value=pd.DataFrame({"x": [], "y": []}),
|
| 314 |
+
x="x",
|
| 315 |
+
y="y",
|
| 316 |
+
visible=False,
|
| 317 |
+
)
|
| 318 |
+
gr.Markdown("### Highlighted frames")
|
| 319 |
+
gallery = gr.Gallery(
|
| 320 |
+
value=[], label="highlight", columns=5, visible=False
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
video_input.change(video_upload, inputs=[video_input], outputs=output)
|
| 324 |
+
radio.select(
|
| 325 |
+
model_load,
|
| 326 |
+
inputs=[radio, video_input],
|
| 327 |
+
outputs=[load_status_text, output],
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
button.click(
|
| 331 |
+
predict,
|
| 332 |
+
inputs=[query_input, line, gallery],
|
| 333 |
+
outputs=[
|
| 334 |
+
button_1,
|
| 335 |
+
button_2,
|
| 336 |
+
button_3,
|
| 337 |
+
button_4,
|
| 338 |
+
button_5,
|
| 339 |
+
line,
|
| 340 |
+
gallery,
|
| 341 |
+
],
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
demo.launch()
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
if __name__ == "__main__":
|
| 348 |
+
main()
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
ffmpeg
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/line/lighthouse.git
|
| 2 |
+
torch==2.1.0
|
| 3 |
+
torchvision==0.16.0
|
| 4 |
+
torchaudio==2.1.0
|
| 5 |
+
torchtext==0.16.0
|