Spaces:
Runtime error
Runtime error
Commit
·
ad38c8f
1
Parent(s):
3c378cf
draft app
Browse files- app.py +120 -0
- requirements.in +6 -0
- requirements.txt +329 -0
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import arxiv
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 5 |
+
from cachetools import TTLCache, cached
|
| 6 |
+
from setfit import SetFitModel
|
| 7 |
+
from tqdm.auto import tqdm
|
| 8 |
+
|
| 9 |
+
CACHE_TIME = 60 * 60 * 12
|
| 10 |
+
MAX_RESULTS = 30_000
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
@cached(cache=TTLCache(maxsize=10, ttl=CACHE_TIME))
|
| 14 |
+
def get_arxiv_result():
|
| 15 |
+
search = arxiv.Search(
|
| 16 |
+
query="ti:dataset AND abs:machine learning",
|
| 17 |
+
max_results=MAX_RESULTS,
|
| 18 |
+
sort_by=arxiv.SortCriterion.SubmittedDate,
|
| 19 |
+
)
|
| 20 |
+
return [
|
| 21 |
+
{
|
| 22 |
+
"title": result.title,
|
| 23 |
+
"abstract": result.summary,
|
| 24 |
+
"url": result.entry_id,
|
| 25 |
+
"category": result.primary_category,
|
| 26 |
+
"updated": result.updated,
|
| 27 |
+
}
|
| 28 |
+
for result in tqdm(search.results(), total=MAX_RESULTS)
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def load_model():
|
| 33 |
+
return SetFitModel.from_pretrained("librarian-bots/is_new_dataset_teacher_model")
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def format_row_for_model(row):
|
| 37 |
+
return f"TITLE: {row['title']} \n\nABSTRACT: {row['abstract']}"
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
int2label = {0: "new_dataset", 1: "not_new_dataset"}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def get_predictions(data: list[dict], model=None, batch_size=32):
|
| 44 |
+
if model is None:
|
| 45 |
+
model = load_model()
|
| 46 |
+
predictions = []
|
| 47 |
+
for i in tqdm(range(0, len(data), batch_size)):
|
| 48 |
+
batch = data[i : i + batch_size]
|
| 49 |
+
text_inputs = [format_row_for_model(row) for row in batch]
|
| 50 |
+
batch_predictions = model.predict_proba(text_inputs)
|
| 51 |
+
for j, row in enumerate(batch):
|
| 52 |
+
prediction = batch_predictions[j]
|
| 53 |
+
row["prediction"] = int2label[int(prediction.argmax())]
|
| 54 |
+
row["probability"] = float(prediction.max())
|
| 55 |
+
predictions.append(row)
|
| 56 |
+
return predictions
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def create_markdown(row):
|
| 60 |
+
title = row["title"]
|
| 61 |
+
abstract = row["abstract"]
|
| 62 |
+
arxiv_id = row["arxiv_id"]
|
| 63 |
+
hub_paper_url = f"https://huggingface.co/papers/{arxiv_id}"
|
| 64 |
+
updated = row["updated"]
|
| 65 |
+
updated = updated.strftime("%Y-%m-%d")
|
| 66 |
+
broad_category = row["broad_category"]
|
| 67 |
+
category = row["category"]
|
| 68 |
+
return f""" <h1> {title} </h1> updated: {updated}
|
| 69 |
+
| category: {broad_category} | subcategory: {category} |
|
| 70 |
+
\n\n{abstract}
|
| 71 |
+
\n\n [Hugging Face Papers page]({hub_paper_url})
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@cached(cache=TTLCache(maxsize=100, ttl=CACHE_TIME))
|
| 76 |
+
def prepare_data():
|
| 77 |
+
print("Downloading arxiv results...")
|
| 78 |
+
arxiv_results = get_arxiv_result()
|
| 79 |
+
print("loading model...")
|
| 80 |
+
model = load_model()
|
| 81 |
+
print("Making predictions...")
|
| 82 |
+
predictions = get_predictions(arxiv_results, model=model)
|
| 83 |
+
df = pd.DataFrame(predictions)
|
| 84 |
+
df.loc[:, "arxiv_id"] = df["url"].str.extract(r"(\d+\.\d+)")
|
| 85 |
+
df.loc[:, "broad_category"] = df["category"].str.split(".").str[0]
|
| 86 |
+
df.loc[:, "markdown"] = df.apply(create_markdown, axis=1)
|
| 87 |
+
return df
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
all_possible_arxiv_categories = prepare_data().category.unique().tolist()
|
| 91 |
+
broad_categories = prepare_data().broad_category.unique().tolist()
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def create_markdown_summary(categories=broad_categories, all_categories=None):
|
| 95 |
+
df = prepare_data()
|
| 96 |
+
if categories is not None:
|
| 97 |
+
df = df[df["broad_category"].isin(categories)]
|
| 98 |
+
return "\n\n".join(df["markdown"].tolist())
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
scheduler = BackgroundScheduler()
|
| 102 |
+
scheduler.add_job(prepare_data, "cron", hour=3, minute=30)
|
| 103 |
+
scheduler.start()
|
| 104 |
+
|
| 105 |
+
with gr.Blocks() as demo:
|
| 106 |
+
gr.Markdown("## New Datasets in Machine Learning")
|
| 107 |
+
gr.Markdown(
|
| 108 |
+
"This Space attempts to show new papers on arXiv that are *likely* to be papers"
|
| 109 |
+
" introducing new datasets. \n\n"
|
| 110 |
+
)
|
| 111 |
+
broad_categories = gr.Dropdown(
|
| 112 |
+
choices=broad_categories,
|
| 113 |
+
label="Categories",
|
| 114 |
+
multiselect=True,
|
| 115 |
+
value=broad_categories,
|
| 116 |
+
)
|
| 117 |
+
results = gr.Markdown(create_markdown_summary())
|
| 118 |
+
broad_categories.change(create_markdown_summary, broad_categories, results)
|
| 119 |
+
|
| 120 |
+
demo.launch()
|
requirements.in
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
apscheduler
|
| 2 |
+
arxiv
|
| 3 |
+
cachetools
|
| 4 |
+
gradio
|
| 5 |
+
scikit-learn==1.2.2
|
| 6 |
+
setfit
|
requirements.txt
ADDED
|
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#
|
| 2 |
+
# This file is autogenerated by pip-compile with Python 3.11
|
| 3 |
+
# by the following command:
|
| 4 |
+
#
|
| 5 |
+
# pip-compile
|
| 6 |
+
#
|
| 7 |
+
aiofiles==23.2.1
|
| 8 |
+
# via gradio
|
| 9 |
+
aiohttp==3.8.5
|
| 10 |
+
# via
|
| 11 |
+
# datasets
|
| 12 |
+
# fsspec
|
| 13 |
+
aiosignal==1.3.1
|
| 14 |
+
# via aiohttp
|
| 15 |
+
altair==5.1.2
|
| 16 |
+
# via gradio
|
| 17 |
+
annotated-types==0.5.0
|
| 18 |
+
# via pydantic
|
| 19 |
+
anyio==3.7.1
|
| 20 |
+
# via
|
| 21 |
+
# fastapi
|
| 22 |
+
# httpcore
|
| 23 |
+
# starlette
|
| 24 |
+
apscheduler==3.10.4
|
| 25 |
+
# via -r requirements.in
|
| 26 |
+
arxiv==1.4.8
|
| 27 |
+
# via -r requirements.in
|
| 28 |
+
async-timeout==4.0.3
|
| 29 |
+
# via aiohttp
|
| 30 |
+
attrs==23.1.0
|
| 31 |
+
# via
|
| 32 |
+
# aiohttp
|
| 33 |
+
# jsonschema
|
| 34 |
+
# referencing
|
| 35 |
+
cachetools==5.3.1
|
| 36 |
+
# via -r requirements.in
|
| 37 |
+
certifi==2023.7.22
|
| 38 |
+
# via
|
| 39 |
+
# httpcore
|
| 40 |
+
# httpx
|
| 41 |
+
# requests
|
| 42 |
+
charset-normalizer==3.3.0
|
| 43 |
+
# via
|
| 44 |
+
# aiohttp
|
| 45 |
+
# requests
|
| 46 |
+
click==8.1.7
|
| 47 |
+
# via
|
| 48 |
+
# nltk
|
| 49 |
+
# uvicorn
|
| 50 |
+
contourpy==1.1.1
|
| 51 |
+
# via matplotlib
|
| 52 |
+
cycler==0.12.0
|
| 53 |
+
# via matplotlib
|
| 54 |
+
datasets==2.14.5
|
| 55 |
+
# via
|
| 56 |
+
# evaluate
|
| 57 |
+
# setfit
|
| 58 |
+
dill==0.3.7
|
| 59 |
+
# via
|
| 60 |
+
# datasets
|
| 61 |
+
# evaluate
|
| 62 |
+
# multiprocess
|
| 63 |
+
evaluate==0.4.0
|
| 64 |
+
# via setfit
|
| 65 |
+
fastapi==0.103.2
|
| 66 |
+
# via gradio
|
| 67 |
+
feedparser==6.0.10
|
| 68 |
+
# via arxiv
|
| 69 |
+
ffmpy==0.3.1
|
| 70 |
+
# via gradio
|
| 71 |
+
filelock==3.12.4
|
| 72 |
+
# via
|
| 73 |
+
# huggingface-hub
|
| 74 |
+
# torch
|
| 75 |
+
# transformers
|
| 76 |
+
fonttools==4.43.0
|
| 77 |
+
# via matplotlib
|
| 78 |
+
frozenlist==1.4.0
|
| 79 |
+
# via
|
| 80 |
+
# aiohttp
|
| 81 |
+
# aiosignal
|
| 82 |
+
fsspec[http]==2023.6.0
|
| 83 |
+
# via
|
| 84 |
+
# datasets
|
| 85 |
+
# evaluate
|
| 86 |
+
# gradio-client
|
| 87 |
+
# huggingface-hub
|
| 88 |
+
# torch
|
| 89 |
+
gradio==3.46.1
|
| 90 |
+
# via -r requirements.in
|
| 91 |
+
gradio-client==0.5.3
|
| 92 |
+
# via gradio
|
| 93 |
+
h11==0.14.0
|
| 94 |
+
# via
|
| 95 |
+
# httpcore
|
| 96 |
+
# uvicorn
|
| 97 |
+
httpcore==0.18.0
|
| 98 |
+
# via httpx
|
| 99 |
+
httpx==0.25.0
|
| 100 |
+
# via
|
| 101 |
+
# gradio
|
| 102 |
+
# gradio-client
|
| 103 |
+
huggingface-hub==0.16.4
|
| 104 |
+
# via
|
| 105 |
+
# datasets
|
| 106 |
+
# evaluate
|
| 107 |
+
# gradio
|
| 108 |
+
# gradio-client
|
| 109 |
+
# sentence-transformers
|
| 110 |
+
# tokenizers
|
| 111 |
+
# transformers
|
| 112 |
+
idna==3.4
|
| 113 |
+
# via
|
| 114 |
+
# anyio
|
| 115 |
+
# httpx
|
| 116 |
+
# requests
|
| 117 |
+
# yarl
|
| 118 |
+
importlib-resources==6.1.0
|
| 119 |
+
# via gradio
|
| 120 |
+
jinja2==3.1.2
|
| 121 |
+
# via
|
| 122 |
+
# altair
|
| 123 |
+
# gradio
|
| 124 |
+
# torch
|
| 125 |
+
joblib==1.3.2
|
| 126 |
+
# via
|
| 127 |
+
# nltk
|
| 128 |
+
# scikit-learn
|
| 129 |
+
jsonschema==4.19.1
|
| 130 |
+
# via altair
|
| 131 |
+
jsonschema-specifications==2023.7.1
|
| 132 |
+
# via jsonschema
|
| 133 |
+
kiwisolver==1.4.5
|
| 134 |
+
# via matplotlib
|
| 135 |
+
markupsafe==2.1.3
|
| 136 |
+
# via
|
| 137 |
+
# gradio
|
| 138 |
+
# jinja2
|
| 139 |
+
matplotlib==3.8.0
|
| 140 |
+
# via gradio
|
| 141 |
+
mpmath==1.3.0
|
| 142 |
+
# via sympy
|
| 143 |
+
multidict==6.0.4
|
| 144 |
+
# via
|
| 145 |
+
# aiohttp
|
| 146 |
+
# yarl
|
| 147 |
+
multiprocess==0.70.15
|
| 148 |
+
# via
|
| 149 |
+
# datasets
|
| 150 |
+
# evaluate
|
| 151 |
+
networkx==3.1
|
| 152 |
+
# via torch
|
| 153 |
+
nltk==3.8.1
|
| 154 |
+
# via sentence-transformers
|
| 155 |
+
numpy==1.26.0
|
| 156 |
+
# via
|
| 157 |
+
# altair
|
| 158 |
+
# contourpy
|
| 159 |
+
# datasets
|
| 160 |
+
# evaluate
|
| 161 |
+
# gradio
|
| 162 |
+
# matplotlib
|
| 163 |
+
# pandas
|
| 164 |
+
# pyarrow
|
| 165 |
+
# scikit-learn
|
| 166 |
+
# scipy
|
| 167 |
+
# sentence-transformers
|
| 168 |
+
# torchvision
|
| 169 |
+
# transformers
|
| 170 |
+
orjson==3.9.7
|
| 171 |
+
# via gradio
|
| 172 |
+
packaging==23.2
|
| 173 |
+
# via
|
| 174 |
+
# altair
|
| 175 |
+
# datasets
|
| 176 |
+
# evaluate
|
| 177 |
+
# gradio
|
| 178 |
+
# gradio-client
|
| 179 |
+
# huggingface-hub
|
| 180 |
+
# matplotlib
|
| 181 |
+
# transformers
|
| 182 |
+
pandas==2.1.1
|
| 183 |
+
# via
|
| 184 |
+
# altair
|
| 185 |
+
# datasets
|
| 186 |
+
# evaluate
|
| 187 |
+
# gradio
|
| 188 |
+
pillow==10.0.1
|
| 189 |
+
# via
|
| 190 |
+
# gradio
|
| 191 |
+
# matplotlib
|
| 192 |
+
# torchvision
|
| 193 |
+
pyarrow==13.0.0
|
| 194 |
+
# via datasets
|
| 195 |
+
pydantic==2.4.2
|
| 196 |
+
# via
|
| 197 |
+
# fastapi
|
| 198 |
+
# gradio
|
| 199 |
+
pydantic-core==2.10.1
|
| 200 |
+
# via pydantic
|
| 201 |
+
pydub==0.25.1
|
| 202 |
+
# via gradio
|
| 203 |
+
pyparsing==3.1.1
|
| 204 |
+
# via matplotlib
|
| 205 |
+
python-dateutil==2.8.2
|
| 206 |
+
# via
|
| 207 |
+
# matplotlib
|
| 208 |
+
# pandas
|
| 209 |
+
python-multipart==0.0.6
|
| 210 |
+
# via gradio
|
| 211 |
+
pytz==2023.3.post1
|
| 212 |
+
# via
|
| 213 |
+
# apscheduler
|
| 214 |
+
# pandas
|
| 215 |
+
pyyaml==6.0.1
|
| 216 |
+
# via
|
| 217 |
+
# datasets
|
| 218 |
+
# gradio
|
| 219 |
+
# huggingface-hub
|
| 220 |
+
# transformers
|
| 221 |
+
referencing==0.30.2
|
| 222 |
+
# via
|
| 223 |
+
# jsonschema
|
| 224 |
+
# jsonschema-specifications
|
| 225 |
+
regex==2023.10.3
|
| 226 |
+
# via
|
| 227 |
+
# nltk
|
| 228 |
+
# transformers
|
| 229 |
+
requests==2.31.0
|
| 230 |
+
# via
|
| 231 |
+
# datasets
|
| 232 |
+
# evaluate
|
| 233 |
+
# fsspec
|
| 234 |
+
# gradio
|
| 235 |
+
# gradio-client
|
| 236 |
+
# huggingface-hub
|
| 237 |
+
# responses
|
| 238 |
+
# torchvision
|
| 239 |
+
# transformers
|
| 240 |
+
responses==0.18.0
|
| 241 |
+
# via evaluate
|
| 242 |
+
rpds-py==0.10.4
|
| 243 |
+
# via
|
| 244 |
+
# jsonschema
|
| 245 |
+
# referencing
|
| 246 |
+
safetensors==0.3.3
|
| 247 |
+
# via transformers
|
| 248 |
+
scikit-learn==1.2.2
|
| 249 |
+
# via
|
| 250 |
+
# -r requirements.in
|
| 251 |
+
# sentence-transformers
|
| 252 |
+
scipy==1.11.3
|
| 253 |
+
# via
|
| 254 |
+
# scikit-learn
|
| 255 |
+
# sentence-transformers
|
| 256 |
+
semantic-version==2.10.0
|
| 257 |
+
# via gradio
|
| 258 |
+
sentence-transformers==2.2.2
|
| 259 |
+
# via setfit
|
| 260 |
+
sentencepiece==0.1.99
|
| 261 |
+
# via sentence-transformers
|
| 262 |
+
setfit==0.7.0
|
| 263 |
+
# via -r requirements.in
|
| 264 |
+
sgmllib3k==1.0.0
|
| 265 |
+
# via feedparser
|
| 266 |
+
six==1.16.0
|
| 267 |
+
# via
|
| 268 |
+
# apscheduler
|
| 269 |
+
# python-dateutil
|
| 270 |
+
sniffio==1.3.0
|
| 271 |
+
# via
|
| 272 |
+
# anyio
|
| 273 |
+
# httpcore
|
| 274 |
+
# httpx
|
| 275 |
+
starlette==0.27.0
|
| 276 |
+
# via fastapi
|
| 277 |
+
sympy==1.12
|
| 278 |
+
# via torch
|
| 279 |
+
threadpoolctl==3.2.0
|
| 280 |
+
# via scikit-learn
|
| 281 |
+
tokenizers==0.14.0
|
| 282 |
+
# via transformers
|
| 283 |
+
toolz==0.12.0
|
| 284 |
+
# via altair
|
| 285 |
+
torch==2.1.0
|
| 286 |
+
# via
|
| 287 |
+
# sentence-transformers
|
| 288 |
+
# torchvision
|
| 289 |
+
torchvision==0.16.0
|
| 290 |
+
# via sentence-transformers
|
| 291 |
+
tqdm==4.66.1
|
| 292 |
+
# via
|
| 293 |
+
# datasets
|
| 294 |
+
# evaluate
|
| 295 |
+
# huggingface-hub
|
| 296 |
+
# nltk
|
| 297 |
+
# sentence-transformers
|
| 298 |
+
# transformers
|
| 299 |
+
transformers==4.34.0
|
| 300 |
+
# via sentence-transformers
|
| 301 |
+
typing-extensions==4.8.0
|
| 302 |
+
# via
|
| 303 |
+
# fastapi
|
| 304 |
+
# gradio
|
| 305 |
+
# gradio-client
|
| 306 |
+
# huggingface-hub
|
| 307 |
+
# pydantic
|
| 308 |
+
# pydantic-core
|
| 309 |
+
# torch
|
| 310 |
+
tzdata==2023.3
|
| 311 |
+
# via pandas
|
| 312 |
+
tzlocal==5.1
|
| 313 |
+
# via apscheduler
|
| 314 |
+
urllib3==2.0.6
|
| 315 |
+
# via
|
| 316 |
+
# requests
|
| 317 |
+
# responses
|
| 318 |
+
uvicorn==0.23.2
|
| 319 |
+
# via gradio
|
| 320 |
+
websockets==11.0.3
|
| 321 |
+
# via
|
| 322 |
+
# gradio
|
| 323 |
+
# gradio-client
|
| 324 |
+
xxhash==3.4.1
|
| 325 |
+
# via
|
| 326 |
+
# datasets
|
| 327 |
+
# evaluate
|
| 328 |
+
yarl==1.9.2
|
| 329 |
+
# via aiohttp
|