Spaces:
Runtime error
Runtime error
Commit
·
19c43aa
1
Parent(s):
6709ec5
feat: Add Hugging Face Hub integration for uploading database file
Browse files
dataset_search_client_notebook.ipynb
ADDED
|
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"id": "Kq8_kBUjxY3B"
|
| 7 |
+
},
|
| 8 |
+
"source": [
|
| 9 |
+
"# Dataset Search Client Documentation\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"This notebook demonstrates how to use the [librarian-bots/dataset-column-search-api](https://huggingface.co/spaces/librarian-bots/dataset-column-search-api) API to search for Hugging Face datasets by their column names."
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "markdown",
|
| 16 |
+
"metadata": {
|
| 17 |
+
"id": "ArdwzeQSxY3D"
|
| 18 |
+
},
|
| 19 |
+
"source": [
|
| 20 |
+
"## Introduction\n",
|
| 21 |
+
"\n",
|
| 22 |
+
"The Hugging Face Hub hosts a vast collection of datasets for various machine learning tasks. These datasets often have different structures and column names. The [librarian-bots/dataset-column-search-api](https://huggingface.co/spaces/librarian-bots/dataset-column-search-api) API allows you to find datasets that match specific column structures, which can be incredibly useful for tasks like:\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"1. Finding datasets suitable for specific machine learning tasks\n",
|
| 25 |
+
"2. Identifying datasets with compatible structures for transfer learning or data augmentation\n",
|
| 26 |
+
"3. Exploring the availability of datasets with certain features or labels\n",
|
| 27 |
+
"\n",
|
| 28 |
+
"By searching based on column names, you can quickly identify datasets that fit your specific needs without having to manually inspect each dataset's structure."
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "markdown",
|
| 33 |
+
"metadata": {
|
| 34 |
+
"id": "5KeXd86UxY3D"
|
| 35 |
+
},
|
| 36 |
+
"source": [
|
| 37 |
+
"## Setup\n",
|
| 38 |
+
"\n",
|
| 39 |
+
"First, let's import the necessary libraries and define a `DatasetSearchClient` class which we'll use to call the API (feel free to directly call the API if prefered)."
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "code",
|
| 44 |
+
"execution_count": 94,
|
| 45 |
+
"metadata": {
|
| 46 |
+
"id": "EyvEz03KxY3D"
|
| 47 |
+
},
|
| 48 |
+
"outputs": [],
|
| 49 |
+
"source": [
|
| 50 |
+
"import requests\n",
|
| 51 |
+
"from typing import List, Dict, Any, Iterator\n",
|
| 52 |
+
"\n",
|
| 53 |
+
"class DatasetSearchClient:\n",
|
| 54 |
+
" def __init__(self, base_url: str = \"https://librarian-bots-dataset-column-search-api.hf.space\"):\n",
|
| 55 |
+
" self.base_url = base_url\n",
|
| 56 |
+
"\n",
|
| 57 |
+
" def search(self,\n",
|
| 58 |
+
" columns: List[str],\n",
|
| 59 |
+
" match_all: bool = False,\n",
|
| 60 |
+
" page_size: int = 100) -> Iterator[Dict[str, Any]]:\n",
|
| 61 |
+
" \"\"\"\n",
|
| 62 |
+
" Search datasets using the provided API, automatically handling pagination.\n",
|
| 63 |
+
"\n",
|
| 64 |
+
" Args:\n",
|
| 65 |
+
" columns (List[str]): List of column names to search for.\n",
|
| 66 |
+
" match_all (bool, optional): If True, match all columns. If False, match any column. Defaults to False.\n",
|
| 67 |
+
" page_size (int, optional): Number of results per page. Defaults to 100.\n",
|
| 68 |
+
"\n",
|
| 69 |
+
" Yields:\n",
|
| 70 |
+
" Dict[str, Any]: Each dataset result from all pages.\n",
|
| 71 |
+
"\n",
|
| 72 |
+
" Raises:\n",
|
| 73 |
+
" requests.RequestException: If there's an error with the HTTP request.\n",
|
| 74 |
+
" ValueError: If the API returns an unexpected response format.\n",
|
| 75 |
+
" \"\"\"\n",
|
| 76 |
+
" page = 1\n",
|
| 77 |
+
" total_results = None\n",
|
| 78 |
+
"\n",
|
| 79 |
+
" while total_results is None or (page - 1) * page_size < total_results:\n",
|
| 80 |
+
" params = {\n",
|
| 81 |
+
" \"columns\": columns,\n",
|
| 82 |
+
" \"match_all\": str(match_all).lower(),\n",
|
| 83 |
+
" \"page\": page,\n",
|
| 84 |
+
" \"page_size\": page_size\n",
|
| 85 |
+
" }\n",
|
| 86 |
+
"\n",
|
| 87 |
+
" try:\n",
|
| 88 |
+
" response = requests.get(f\"{self.base_url}/search\", params=params)\n",
|
| 89 |
+
" response.raise_for_status()\n",
|
| 90 |
+
" data = response.json()\n",
|
| 91 |
+
"\n",
|
| 92 |
+
" if not {\"total\", \"page\", \"page_size\", \"results\"}.issubset(data.keys()):\n",
|
| 93 |
+
" raise ValueError(\"Unexpected response format from the API\")\n",
|
| 94 |
+
"\n",
|
| 95 |
+
" if total_results is None:\n",
|
| 96 |
+
" total_results = data['total']\n",
|
| 97 |
+
"\n",
|
| 98 |
+
" for dataset in data['results']:\n",
|
| 99 |
+
" yield dataset\n",
|
| 100 |
+
"\n",
|
| 101 |
+
" page += 1\n",
|
| 102 |
+
"\n",
|
| 103 |
+
" except requests.RequestException as e:\n",
|
| 104 |
+
" raise requests.RequestException(f\"Error connecting to the API: {str(e)}\")\n",
|
| 105 |
+
" except ValueError as e:\n",
|
| 106 |
+
" raise ValueError(f\"Error processing API response: {str(e)}\")\n",
|
| 107 |
+
"\n",
|
| 108 |
+
"# Create an instance of the client\n",
|
| 109 |
+
"client = DatasetSearchClient()"
|
| 110 |
+
]
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"cell_type": "markdown",
|
| 114 |
+
"metadata": {
|
| 115 |
+
"id": "mxVqxdCtxY3E"
|
| 116 |
+
},
|
| 117 |
+
"source": [
|
| 118 |
+
"## Example 1: Searching for Text Classification Datasets\n",
|
| 119 |
+
"\n",
|
| 120 |
+
"Let's start by searching for datasets that have both \"text\" and \"label\" columns, which are common in text classification tasks:"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"execution_count": 95,
|
| 126 |
+
"metadata": {
|
| 127 |
+
"colab": {
|
| 128 |
+
"base_uri": "https://localhost:8080/"
|
| 129 |
+
},
|
| 130 |
+
"id": "T2wyABxrxY3E",
|
| 131 |
+
"outputId": "9541e61e-1e0d-4d8a-a5d7-1e2db117bf3c"
|
| 132 |
+
},
|
| 133 |
+
"outputs": [
|
| 134 |
+
{
|
| 135 |
+
"output_type": "stream",
|
| 136 |
+
"name": "stdout",
|
| 137 |
+
"text": [
|
| 138 |
+
"Datasets suitable for text classification (with 'text' and 'label' columns):\n",
|
| 139 |
+
"1. mteb/amazon_counterfactual: ['text', 'label', 'label_text']\n",
|
| 140 |
+
"2. dair-ai/emotion: ['text', 'label']\n",
|
| 141 |
+
"3. stanfordnlp/imdb: ['text', 'label']\n",
|
| 142 |
+
"4. 203427as321/articles: ['label', 'text', '__index_level_0__']\n",
|
| 143 |
+
"5. indonlp/NusaX-senti: ['id', 'text', 'lang', 'label']\n",
|
| 144 |
+
"\n",
|
| 145 |
+
"Total datasets found: 1866\n"
|
| 146 |
+
]
|
| 147 |
+
}
|
| 148 |
+
],
|
| 149 |
+
"source": [
|
| 150 |
+
"text_classification_columns = [\"text\", \"label\"]\n",
|
| 151 |
+
"results = client.search(text_classification_columns, match_all=True)\n",
|
| 152 |
+
"\n",
|
| 153 |
+
"print(\"Datasets suitable for text classification (with 'text' and 'label' columns):\")\n",
|
| 154 |
+
"for i, dataset in enumerate(results, 1):\n",
|
| 155 |
+
" print(f\"{i}. {dataset['hub_id']}: {dataset['column_names']}\")\n",
|
| 156 |
+
" if i >= 5: # Print only the first 5 as a sample\n",
|
| 157 |
+
" break\n",
|
| 158 |
+
"\n",
|
| 159 |
+
"total_results = len(list(client.search(text_classification_columns, match_all=True)))\n",
|
| 160 |
+
"print(f\"\\nTotal datasets found: {total_results}\")"
|
| 161 |
+
]
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"cell_type": "markdown",
|
| 165 |
+
"metadata": {
|
| 166 |
+
"id": "al0oo4yBxY3E"
|
| 167 |
+
},
|
| 168 |
+
"source": [
|
| 169 |
+
"## Example 2: Searching for Question-Answering Datasets\n",
|
| 170 |
+
"\n",
|
| 171 |
+
"Now, let's search for datasets that could be used for question-answering tasks:"
|
| 172 |
+
]
|
| 173 |
+
},
|
| 174 |
+
{
|
| 175 |
+
"cell_type": "code",
|
| 176 |
+
"execution_count": 97,
|
| 177 |
+
"metadata": {
|
| 178 |
+
"colab": {
|
| 179 |
+
"base_uri": "https://localhost:8080/"
|
| 180 |
+
},
|
| 181 |
+
"id": "WY9e3o0CxY3E",
|
| 182 |
+
"outputId": "f46cb86a-9df9-405a-bca9-17cac3fe5faa"
|
| 183 |
+
},
|
| 184 |
+
"outputs": [
|
| 185 |
+
{
|
| 186 |
+
"output_type": "stream",
|
| 187 |
+
"name": "stdout",
|
| 188 |
+
"text": [
|
| 189 |
+
"Datasets suitable for question-answering tasks (with 'question', 'answer', and 'context' columns):\n",
|
| 190 |
+
"1. hotpotqa/hotpot_qa: ['id', 'question', 'answer', 'type', 'level', 'supporting_facts', 'context']\n",
|
| 191 |
+
"2. neural-bridge/rag-dataset-12000: ['context', 'question', 'answer']\n",
|
| 192 |
+
"3. ryo0634/xquad-sampled: ['id', 'question', 'context', 'answer_sentence', 'answer']\n",
|
| 193 |
+
"4. lcw99/wikipedia-korean-20240501-1million-qna: ['question', 'answer', 'context']\n",
|
| 194 |
+
"5. virattt/financial-qa-10K: ['question', 'answer', 'context', 'ticker', 'filing']\n",
|
| 195 |
+
"\n",
|
| 196 |
+
"Total datasets found: 646\n"
|
| 197 |
+
]
|
| 198 |
+
}
|
| 199 |
+
],
|
| 200 |
+
"source": [
|
| 201 |
+
"qa_columns = [\"question\", \"answer\", \"context\"]\n",
|
| 202 |
+
"results = client.search(qa_columns, match_all=True)\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"print(\"Datasets suitable for question-answering tasks (with 'question', 'answer', and 'context' columns):\")\n",
|
| 205 |
+
"for i, dataset in enumerate(results, 1):\n",
|
| 206 |
+
" print(f\"{i}. {dataset['hub_id']}: {dataset['column_names']}\")\n",
|
| 207 |
+
" if i >= 5: # Print only the first 5 as a sample\n",
|
| 208 |
+
" break\n",
|
| 209 |
+
"\n",
|
| 210 |
+
"total_results = len(list(client.search(qa_columns, match_all=True)))\n",
|
| 211 |
+
"print(f\"\\nTotal datasets found: {total_results}\")"
|
| 212 |
+
]
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"cell_type": "markdown",
|
| 216 |
+
"metadata": {
|
| 217 |
+
"id": "kiU3-f-OxY3E"
|
| 218 |
+
},
|
| 219 |
+
"source": [
|
| 220 |
+
"## Example 3: Searching for Instruction-Following Datasets\n",
|
| 221 |
+
"\n",
|
| 222 |
+
"Let's search for datasets that could be used for instruction-following tasks, which are common in training large language models:"
|
| 223 |
+
]
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"cell_type": "code",
|
| 227 |
+
"execution_count": 98,
|
| 228 |
+
"metadata": {
|
| 229 |
+
"colab": {
|
| 230 |
+
"base_uri": "https://localhost:8080/"
|
| 231 |
+
},
|
| 232 |
+
"id": "nt8SSWaRxY3F",
|
| 233 |
+
"outputId": "42460b4b-6dac-48f1-a3b2-b1504bd16686"
|
| 234 |
+
},
|
| 235 |
+
"outputs": [
|
| 236 |
+
{
|
| 237 |
+
"output_type": "stream",
|
| 238 |
+
"name": "stdout",
|
| 239 |
+
"text": [
|
| 240 |
+
"Datasets suitable for instruction-following tasks (with 'instruction', 'input', and 'output' columns):\n",
|
| 241 |
+
"1. garage-bAInd/Open-Platypus: ['input', 'output', 'instruction', 'data_source']\n",
|
| 242 |
+
"2. HuggingFaceH4/databricks_dolly_15k: ['category', 'instruction', 'input', 'output']\n",
|
| 243 |
+
"3. chargoddard/alpaca-gpt4-500: ['instruction', 'input', 'output', 'text', '__index_level_0__']\n",
|
| 244 |
+
"4. vicgalle/alpaca-gpt4: ['instruction', 'input', 'output', 'text']\n",
|
| 245 |
+
"5. llamafactory/alpaca_en: ['instruction', 'input', 'output']\n",
|
| 246 |
+
"\n",
|
| 247 |
+
"Total datasets found: 1937\n"
|
| 248 |
+
]
|
| 249 |
+
}
|
| 250 |
+
],
|
| 251 |
+
"source": [
|
| 252 |
+
"instruction_columns = [\"instruction\", \"input\", \"output\"]\n",
|
| 253 |
+
"results = client.search(instruction_columns, match_all=True)\n",
|
| 254 |
+
"\n",
|
| 255 |
+
"print(\"Datasets suitable for instruction-following tasks (with 'instruction', 'input', and 'output' columns):\")\n",
|
| 256 |
+
"for i, dataset in enumerate(results, 1):\n",
|
| 257 |
+
" print(f\"{i}. {dataset['hub_id']}: {dataset['column_names']}\")\n",
|
| 258 |
+
" if i >= 5: # Print only the first 5 as a sample\n",
|
| 259 |
+
" break\n",
|
| 260 |
+
"\n",
|
| 261 |
+
"total_results = len(list(client.search(instruction_columns, match_all=True)))\n",
|
| 262 |
+
"print(f\"\\nTotal datasets found: {total_results}\")"
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"cell_type": "markdown",
|
| 267 |
+
"source": [
|
| 268 |
+
"# Creating collections for common dataset formats\n",
|
| 269 |
+
"\n",
|
| 270 |
+
"We can also use the API to create a Hugging Face Collection based on our search. Let's use an alpaca formatted dataset as an example:\n",
|
| 271 |
+
"\n",
|
| 272 |
+
"alpaca\n",
|
| 273 |
+
"```\n",
|
| 274 |
+
"{\"instruction\": \"...\", \"input\": \"...\", \"output\": \"...\"}\n",
|
| 275 |
+
"```\n"
|
| 276 |
+
],
|
| 277 |
+
"metadata": {
|
| 278 |
+
"id": "yRdaLtZ0AQlj"
|
| 279 |
+
}
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"cell_type": "code",
|
| 283 |
+
"source": [
|
| 284 |
+
"alpaca = ['instruction', 'input', 'output']"
|
| 285 |
+
],
|
| 286 |
+
"metadata": {
|
| 287 |
+
"id": "kdB0wnEDDek8"
|
| 288 |
+
},
|
| 289 |
+
"execution_count": 99,
|
| 290 |
+
"outputs": []
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "code",
|
| 294 |
+
"source": [
|
| 295 |
+
"results = list(client.search(alpaca, match_all=True))\n",
|
| 296 |
+
"len(results)"
|
| 297 |
+
],
|
| 298 |
+
"metadata": {
|
| 299 |
+
"colab": {
|
| 300 |
+
"base_uri": "https://localhost:8080/"
|
| 301 |
+
},
|
| 302 |
+
"id": "uh52VwKTQasR",
|
| 303 |
+
"outputId": "c16e50ce-6799-42b9-9ae4-e9016d767c6f"
|
| 304 |
+
},
|
| 305 |
+
"execution_count": 100,
|
| 306 |
+
"outputs": [
|
| 307 |
+
{
|
| 308 |
+
"output_type": "execute_result",
|
| 309 |
+
"data": {
|
| 310 |
+
"text/plain": [
|
| 311 |
+
"1937"
|
| 312 |
+
]
|
| 313 |
+
},
|
| 314 |
+
"metadata": {},
|
| 315 |
+
"execution_count": 100
|
| 316 |
+
}
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "markdown",
|
| 321 |
+
"source": [
|
| 322 |
+
"We now import some functions from `huggingface_hub` to create a collection."
|
| 323 |
+
],
|
| 324 |
+
"metadata": {
|
| 325 |
+
"id": "BZ6LNKg3FdYs"
|
| 326 |
+
}
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"cell_type": "code",
|
| 330 |
+
"source": [
|
| 331 |
+
"from huggingface_hub import login, create_collection, add_collection_item"
|
| 332 |
+
],
|
| 333 |
+
"metadata": {
|
| 334 |
+
"id": "eckH26s8w_U4"
|
| 335 |
+
},
|
| 336 |
+
"execution_count": 25,
|
| 337 |
+
"outputs": []
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"cell_type": "markdown",
|
| 341 |
+
"source": [
|
| 342 |
+
"I have my HF_TOKEN stored as a Secret in Colab. You can also login by calling `login()` directly."
|
| 343 |
+
],
|
| 344 |
+
"metadata": {
|
| 345 |
+
"id": "nUIshM8bFhW3"
|
| 346 |
+
}
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"cell_type": "code",
|
| 350 |
+
"source": [
|
| 351 |
+
"from google.colab import userdata"
|
| 352 |
+
],
|
| 353 |
+
"metadata": {
|
| 354 |
+
"id": "3ywhU4J7xGuE"
|
| 355 |
+
},
|
| 356 |
+
"execution_count": 102,
|
| 357 |
+
"outputs": []
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"cell_type": "code",
|
| 361 |
+
"source": [
|
| 362 |
+
"login(userdata.get('HF_TOKEN'))"
|
| 363 |
+
],
|
| 364 |
+
"metadata": {
|
| 365 |
+
"colab": {
|
| 366 |
+
"base_uri": "https://localhost:8080/"
|
| 367 |
+
},
|
| 368 |
+
"id": "b0yRHNw0xCq7",
|
| 369 |
+
"outputId": "1bcdbda5-34d9-4848-f315-2fc81772df38"
|
| 370 |
+
},
|
| 371 |
+
"execution_count": 103,
|
| 372 |
+
"outputs": [
|
| 373 |
+
{
|
| 374 |
+
"output_type": "stream",
|
| 375 |
+
"name": "stdout",
|
| 376 |
+
"text": [
|
| 377 |
+
"The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
|
| 378 |
+
"Token is valid (permission: write).\n",
|
| 379 |
+
"Your token has been saved to /root/.cache/huggingface/token\n",
|
| 380 |
+
"Login successful\n"
|
| 381 |
+
]
|
| 382 |
+
}
|
| 383 |
+
]
|
| 384 |
+
},
|
| 385 |
+
{
|
| 386 |
+
"cell_type": "markdown",
|
| 387 |
+
"source": [
|
| 388 |
+
"We create a collection using `create_collection`. WE"
|
| 389 |
+
],
|
| 390 |
+
"metadata": {
|
| 391 |
+
"id": "krcmAIyNFshv"
|
| 392 |
+
}
|
| 393 |
+
},
|
| 394 |
+
{
|
| 395 |
+
"cell_type": "code",
|
| 396 |
+
"source": [
|
| 397 |
+
"collection = create_collection(\"Probably Alpaca Style Datasets\", exists_ok=True)"
|
| 398 |
+
],
|
| 399 |
+
"metadata": {
|
| 400 |
+
"id": "fGpAnGOPxEWp"
|
| 401 |
+
},
|
| 402 |
+
"execution_count": 108,
|
| 403 |
+
"outputs": []
|
| 404 |
+
},
|
| 405 |
+
{
|
| 406 |
+
"cell_type": "code",
|
| 407 |
+
"source": [
|
| 408 |
+
"collection.title"
|
| 409 |
+
],
|
| 410 |
+
"metadata": {
|
| 411 |
+
"colab": {
|
| 412 |
+
"base_uri": "https://localhost:8080/",
|
| 413 |
+
"height": 36
|
| 414 |
+
},
|
| 415 |
+
"id": "Gt8rql39RC5R",
|
| 416 |
+
"outputId": "4af9a2f0-6c20-43a9-f46f-1dc38c2cb480"
|
| 417 |
+
},
|
| 418 |
+
"execution_count": 109,
|
| 419 |
+
"outputs": [
|
| 420 |
+
{
|
| 421 |
+
"output_type": "execute_result",
|
| 422 |
+
"data": {
|
| 423 |
+
"text/plain": [
|
| 424 |
+
"'Probably Alpaca Style Datasets'"
|
| 425 |
+
],
|
| 426 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
| 427 |
+
"type": "string"
|
| 428 |
+
}
|
| 429 |
+
},
|
| 430 |
+
"metadata": {},
|
| 431 |
+
"execution_count": 109
|
| 432 |
+
}
|
| 433 |
+
]
|
| 434 |
+
},
|
| 435 |
+
{
|
| 436 |
+
"cell_type": "code",
|
| 437 |
+
"source": [
|
| 438 |
+
"collection.slug"
|
| 439 |
+
],
|
| 440 |
+
"metadata": {
|
| 441 |
+
"colab": {
|
| 442 |
+
"base_uri": "https://localhost:8080/",
|
| 443 |
+
"height": 36
|
| 444 |
+
},
|
| 445 |
+
"id": "0OC5U8VeF_Zq",
|
| 446 |
+
"outputId": "bf135fe4-cf65-4425-c541-eb285aaa86e6"
|
| 447 |
+
},
|
| 448 |
+
"execution_count": 110,
|
| 449 |
+
"outputs": [
|
| 450 |
+
{
|
| 451 |
+
"output_type": "execute_result",
|
| 452 |
+
"data": {
|
| 453 |
+
"text/plain": [
|
| 454 |
+
"'davanstrien/probably-alpaca-style-datasets-667eead1bad3a964ea580e04'"
|
| 455 |
+
],
|
| 456 |
+
"application/vnd.google.colaboratory.intrinsic+json": {
|
| 457 |
+
"type": "string"
|
| 458 |
+
}
|
| 459 |
+
},
|
| 460 |
+
"metadata": {},
|
| 461 |
+
"execution_count": 110
|
| 462 |
+
}
|
| 463 |
+
]
|
| 464 |
+
},
|
| 465 |
+
{
|
| 466 |
+
"cell_type": "markdown",
|
| 467 |
+
"source": [
|
| 468 |
+
"We now loop through our results and add them to the Collection."
|
| 469 |
+
],
|
| 470 |
+
"metadata": {
|
| 471 |
+
"id": "-GEpHrekGAx6"
|
| 472 |
+
}
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"cell_type": "code",
|
| 476 |
+
"source": [
|
| 477 |
+
"for result in results:\n",
|
| 478 |
+
" add_collection_item(collection.slug, result['hub_id'], item_type=\"dataset\", exists_ok=True)"
|
| 479 |
+
],
|
| 480 |
+
"metadata": {
|
| 481 |
+
"id": "Vb3hgnRBxW4T"
|
| 482 |
+
},
|
| 483 |
+
"execution_count": null,
|
| 484 |
+
"outputs": []
|
| 485 |
+
},
|
| 486 |
+
{
|
| 487 |
+
"cell_type": "markdown",
|
| 488 |
+
"source": [
|
| 489 |
+
"Since the results have some key metadata about the dataset you can also filter the results further before creating a Collection."
|
| 490 |
+
],
|
| 491 |
+
"metadata": {
|
| 492 |
+
"id": "vOdodAVcGI96"
|
| 493 |
+
}
|
| 494 |
+
}
|
| 495 |
+
],
|
| 496 |
+
"metadata": {
|
| 497 |
+
"kernelspec": {
|
| 498 |
+
"display_name": "Python 3",
|
| 499 |
+
"language": "python",
|
| 500 |
+
"name": "python3"
|
| 501 |
+
},
|
| 502 |
+
"language_info": {
|
| 503 |
+
"codemirror_mode": {
|
| 504 |
+
"name": "ipython",
|
| 505 |
+
"version": 3
|
| 506 |
+
},
|
| 507 |
+
"file_extension": ".py",
|
| 508 |
+
"mimetype": "text/x-python",
|
| 509 |
+
"name": "python",
|
| 510 |
+
"nbconvert_exporter": "python",
|
| 511 |
+
"pygments_lexer": "ipython3",
|
| 512 |
+
"version": "3.8.5"
|
| 513 |
+
},
|
| 514 |
+
"colab": {
|
| 515 |
+
"provenance": []
|
| 516 |
+
}
|
| 517 |
+
},
|
| 518 |
+
"nbformat": 4,
|
| 519 |
+
"nbformat_minor": 0
|
| 520 |
+
}
|