import gradio as gr import torch from diffusers import DiffusionPipeline, DDIMScheduler device = torch.device("cuda" if torch.cuda.is_available() else "cpu") scheduler = DDIMScheduler.from_pretrained('li-yan/diffusion-aurora-256') scheduler.set_timesteps(num_inference_steps=40) pipeline = DiffusionPipeline.from_pretrained( 'li-yan/diffusion-aurora-256', scheduler=scheduler).to(device) def image_gen(name): images = pipeline(num_inference_steps=40).images return images[0] demo = gr.Interface(fn=image_gen, inputs="text", outputs="image") demo.launch()