File size: 5,372 Bytes
75b33dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84ce4ca
 
2475ba1
84ce4ca
2475ba1
84ce4ca
75b33dc
2475ba1
75b33dc
84ce4ca
 
 
 
 
 
75b33dc
 
84ce4ca
 
 
2475ba1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84ce4ca
2475ba1
84ce4ca
2475ba1
84ce4ca
 
 
 
2475ba1
 
 
 
84ce4ca
 
75b33dc
 
84ce4ca
75b33dc
 
 
 
 
 
 
 
 
 
 
 
 
84ce4ca
 
 
75b33dc
 
 
 
 
 
 
 
2475ba1
84ce4ca
75b33dc
84ce4ca
 
75b33dc
 
84ce4ca
2475ba1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
#######################################################################################
#
# This project is one of several repositories exploring image segmentation techniques.
# All related projects and interactive demos can be found at:
# https://huggingface.co/spaces/leonelhs/removators
# Self app: https://huggingface.co/spaces/leonelhs/rembg
#
# Source code is based on or inspired by several projects.
# For more details and proper attribution, please refer to the following resources:
#
# - [face-makeup.PyTorch] - [https://github.com/zllrunning/face-makeup.PyTorch]
# - [BiSeNet] [https://github.com/CoinCheung/BiSeNet]

import gradio as gr
import cv2
import torch
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
import torchvision.transforms as transforms
from bisnet import BiSeNet

REPO_ID = "leonelhs/faceparser"
MODEL_NAME = "79999_iter.pth"

model = BiSeNet(n_classes=19)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_NAME)
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()

part_colors = [
    {"part": "background", "color": [255, 0, 0]},
    {"part": "face",       "color": [219,  79,  66]},
    {"part": "right_brow", "color": [255, 170,   0]},
    {"part": "left_brow",  "color": [255,   0,  85]},
    {"part": "right_eye",  "color": [255,   0, 170]},
    {"part": "left_eye",   "color": [  0, 255,   0]},
    {"part": "glasses",    "color": [ 85, 255,   0]},
    {"part": "right_ear",  "color": [170, 255,   0]},
    {"part": "left_ear",   "color": [  0, 255,  85]},
    {"part": "earrings",   "color": [  0, 255, 170]},
    {"part": "nose",       "color": [  0,   0, 255]},
    {"part": "teeth",      "color": [ 85,   0, 255]},
    {"part": "upper_lip",  "color": [170,   0, 255]},
    {"part": "lower_lip",  "color": [  0,  85, 255]},
    {"part": "neck",       "color": [  0, 170, 255]},
    {"part": "collar",     "color": [255, 255,   0]},
    {"part": "cloths",      "color": [255, 255,  85]},
    {"part": "hair",       "color": [199, 21,  133]},
    {"part": "crown",      "color": [255,   0, 255]},
    {"part": "extra20",    "color": [255,  85, 255]},
    {"part": "extra21",    "color": [255, 170, 255]},
    {"part": "extra22",    "color": [  0, 255, 255]},
    {"part": "extra23",    "color": [ 85, 255, 255]},
    {"part": "extra24",    "color": [170, 255, 255]},
]

def image_to_tensor(image):
    return transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ])(image)

def parse_face(mask):

    num_of_class = np.max(mask)
    face_parts = []

    for index in range(1, num_of_class + 1):
        face_part = np.where(mask == index)
        canvas = np.full((512, 512, 3), 255, dtype=np.uint8)
        canvas[face_part[0], face_part[1], :] = part_colors[index]["color"]
        canvas = cv2.cvtColor(canvas, cv2.COLOR_BGR2GRAY)
        face_parts.append((canvas, part_colors[index]["part"]))

    return face_parts

def predict(image):
    with torch.no_grad():
        image = image.resize((512, 512), Image.Resampling.BILINEAR)
        input_tensor = image_to_tensor(image)
        input_tensor = torch.unsqueeze(input_tensor, 0)
        if torch.cuda.is_available():
            input_tensor = input_tensor.cuda()
        mask = model(input_tensor)[0]
        mask = mask.squeeze(0).cpu().numpy().argmax(0)
        sections = parse_face(mask)
        return image, sections


aboutme = r"""
# PyTorch Image Face Parser

Extracts facial features (hair, nose, eyes, etc.) from images using image segmentation.

This project is part of a larger collection of repositories exploring image segmentation techniques.  
Related projects and interactive demos are available at: [Removators](https://huggingface.co/spaces/leonelhs/removators)

## Acknowledgments
The source code is based on or inspired by the following projects:
- [face-makeup.PyTorch](https://github.com/zllrunning/face-makeup.PyTorch)
- [BiSeNet](https://github.com/CoinCheung/BiSeNet)

## Contact
For questions, comments, or feedback, please contact:  
📧 [email protected]

"""

with gr.Blocks(title="Face Parser") as app:
    navbar = gr.Navbar(visible=True, main_page_name="Workspace")
    gr.Markdown("## Face Parser Tool")
    with gr.Row():
        with gr.Column(scale=1):
            inp = gr.Image(type="pil", label="Upload Image")
            btn_predict = gr.Button("Parse")
        with gr.Column(scale=2):
            out = gr.AnnotatedImage(label="Face parsed annotated")

    btn_predict.click(predict, inputs=[inp], outputs=[out])


with app.route("About this", "/about"):
    gr.Markdown(aboutme)

app.launch(share=False, debug=True, show_error=True, mcp_server=True, pwa=True)
app.queue()