Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from datasets import load_dataset | |
| from transformers import pipeline | |
| from transformers import BarkModel, BarkProcessor | |
| from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration | |
| SAMPLE_RATE = 16000 | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| # asr_model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-medium-mustc-multilingual-st") | |
| # asr_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-mustc-multilingual-st") | |
| asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
| bark_model = BarkModel.from_pretrained("suno/bark") | |
| bark_processor = BarkProcessor.from_pretrained("suno/bark") | |
| def translate(audio): | |
| # inputs = asr_processor(audio, sampling_rate=16000, return_tensors="pt") | |
| # generated_ids = asr_model.generate(inputs["input_features"],attention_mask=inputs["attention_mask"], | |
| # forced_bos_token_id=asr_processor.tokenizer.lang_code_to_id["it"],) | |
| # translation = asr_processor.batch_decode(generated_ids, skip_special_tokens=True) | |
| translation = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "it"}) | |
| return translation["text"] | |
| def synthesise(text): | |
| inputs = bark_processor(text=text, voice_preset="v2/it_speaker_4",return_tensors="pt") | |
| speech = bark_model.generate(**inputs, do_sample=True) | |
| return speech | |
| def speech_to_speech_translation(audio): | |
| translated_text = translate(audio) | |
| synthesised_speech = synthesise(translated_text) | |
| synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) | |
| return SAMPLE_RATE, synthesised_speech | |
| title = "Cascaded STST" | |
| description = """ | |
| Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses Meta's [Speech2Text](https://huggingface.co/facebook/s2t-medium-mustc-multilingual-st) model for speech translation, and Suno's | |
| [Bark](https://huggingface.co/suno/bark) model for text-to-speech: | |
|  | |
| """ | |
| demo = gr.Blocks() | |
| mic_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(source="microphone", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| title=title, | |
| description=description, | |
| ) | |
| file_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(source="upload", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| examples=[["./example.wav"]], | |
| title=title, | |
| description=description, | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
| demo.launch() | |