test / index.html
leoandeol's picture
Add 2 files
0e16082 verified
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>VisionAI - Interactive Object Detection</title>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
<style>
:root {
--primary: #4361ee;
--secondary: #3f37c9;
--accent: #4cc9f0;
--light: #f8f9fa;
--dark: #212529;
--success: #4caf50;
--warning: #ff9800;
--danger: #f44336;
--shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
--transition: all 0.3s ease;
}
* {
margin: 0;
padding: 0;
box-sizing: border-box;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
body {
background-color: #f5f7fa;
color: var(--dark);
line-height: 1.6;
overflow-x: hidden;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
header {
background: linear-gradient(135deg, var(--primary), var(--secondary));
color: white;
padding: 20px 0;
text-align: center;
border-radius: 0 0 20px 20px;
box-shadow: var(--shadow);
margin-bottom: 30px;
position: relative;
overflow: hidden;
}
header::before {
content: '';
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: url('');
opacity: 0.5;
}
header h1 {
font-size: 2.5rem;
margin-bottom: 10px;
position: relative;
animation: fadeInDown 0.8s ease;
}
header p {
font-size: 1.1rem;
opacity: 0.9;
position: relative;
animation: fadeInUp 0.8s ease;
}
@keyframes fadeInDown {
from {
opacity: 0;
transform: translateY(-30px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
@keyframes fadeInUp {
from {
opacity: 0;
transform: translateY(30px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.main-content {
display: flex;
flex-direction: column;
gap: 30px;
}
.detection-section {
background-color: white;
border-radius: 15px;
box-shadow: var(--shadow);
padding: 25px;
display: flex;
flex-direction: column;
gap: 20px;
}
.section-title {
font-size: 1.5rem;
color: var(--primary);
margin-bottom: 10px;
display: flex;
align-items: center;
gap: 10px;
}
.section-title i {
font-size: 1.8rem;
}
.controls {
display: flex;
flex-wrap: wrap;
gap: 15px;
margin-bottom: 20px;
}
.btn {
background-color: var(--primary);
color: white;
border: none;
padding: 10px 20px;
border-radius: 50px;
cursor: pointer;
font-size: 1rem;
font-weight: 600;
transition: var(--transition);
display: flex;
align-items: center;
gap: 8px;
box-shadow: var(--shadow);
}
.btn:hover {
background-color: var(--secondary);
transform: translateY(-2px);
box-shadow: 0 6px 12px rgba(0, 0, 0, 0.15);
}
.btn:active {
transform: translateY(0);
}
.btn.btn-outline {
background-color: transparent;
border: 2px solid var(--primary);
color: var(--primary);
}
.btn.btn-outline:hover {
background-color: var(--primary);
color: white;
}
.btn.btn-success {
background-color: var(--success);
}
.btn.btn-warning {
background-color: var(--warning);
}
.btn.btn-danger {
background-color: var(--danger);
}
.btn.btn-accent {
background-color: var(--accent);
}
.btn:disabled {
background-color: #cccccc;
cursor: not-allowed;
transform: none;
box-shadow: none;
}
.video-container {
position: relative;
width: 100%;
max-width: 800px;
margin: 0 auto;
border-radius: 10px;
overflow: hidden;
box-shadow: var(--shadow);
}
#video {
width: 100%;
display: block;
background-color: #e9ecef;
}
#canvas {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
.file-input {
display: none;
}
.file-label {
display: flex;
align-items: center;
justify-content: center;
padding: 12px 20px;
background-color: var(--primary);
color: white;
border-radius: 50px;
cursor: pointer;
transition: var(--transition);
box-shadow: var(--shadow);
max-width: 300px;
}
.file-label:hover {
background-color: var(--secondary);
transform: translateY(-2px);
}
.detection-results {
margin-top: 20px;
display: grid;
grid-template-columns: repeat(auto-fill, minmax(150px, 1fr));
gap: 15px;
}
.detection-card {
background-color: white;
border-radius: 10px;
padding: 15px;
box-shadow: var(--shadow);
transition: var(--transition);
}
.detection-card:hover {
transform: translateY(-5px);
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.1);
}
.detection-label {
font-weight: bold;
color: var(--primary);
display: flex;
align-items: center;
gap: 8px;
margin-bottom: 5px;
}
.detection-confidence {
height: 6px;
background-color: #e9ecef;
border-radius: 3px;
margin-bottom: 8px;
overflow: hidden;
}
.confidence-bar {
height: 100%;
background: linear-gradient(90deg, var(--accent), var(--primary));
border-radius: 3px;
}
.detection-stats {
display: flex;
justify-content: space-between;
font-size: 0.8rem;
color: #6c757d;
}
.loading {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
gap: 15px;
padding: 30px;
background-color: rgba(255, 255, 255, 0.8);
border-radius: 10px;
margin: 20px 0;
}
.spinner {
width: 40px;
height: 40px;
border: 4px solid rgba(67, 97, 238, 0.2);
border-top-color: var(--primary);
border-radius: 50%;
animation: spin 1s linear infinite;
}
@keyframes spin {
to {
transform: rotate(360deg);
}
}
.stats-container {
display: flex;
gap: 20px;
flex-wrap: wrap;
}
.stat-card {
flex: 1;
min-width: 150px;
background-color: white;
border-radius: 10px;
padding: 20px;
display: flex;
flex-direction: column;
align-items: center;
box-shadow: var(--shadow);
transition: var(--transition);
}
.stat-card:hover {
transform: translateY(-5px);
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.15);
}
.stat-value {
font-size: 2.5rem;
font-weight: bold;
color: var(--primary);
line-height: 1;
}
.stat-label {
font-size: 0.9rem;
color: #6c757d;
text-align: center;
}
footer {
text-align: center;
padding: 30px 0;
margin-top: 50px;
color: #6c757d;
font-size: 0.9rem;
}
@media (max-width: 768px) {
header h1 {
font-size: 2rem;
}
.controls {
flex-direction: column;
align-items: stretch;
}
.file-label {
max-width: 100%;
}
.detection-results {
grid-template-columns: 1fr 1fr;
}
.stats-container {
flex-direction: column;
}
}
/* Toggle switch */
.toggle-container {
display: flex;
align-items: center;
gap: 10px;
}
.switch {
position: relative;
display: inline-block;
width: 60px;
height: 34px;
}
.switch input {
opacity: 0;
width: 0;
height: 0;
}
.slider {
position: absolute;
cursor: pointer;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-color: #ccc;
transition: .4s;
border-radius: 34px;
}
.slider:before {
position: absolute;
content: "";
height: 26px;
width: 26px;
left: 4px;
bottom: 4px;
background-color: white;
transition: .4s;
border-radius: 50%;
}
input:checked + .slider {
background-color: var(--primary);
}
input:focus + .slider {
box-shadow: 0 0 1px var(--primary);
}
input:checked + .slider:before {
transform: translateX(26px);
}
/* Custom select */
.select-container {
position: relative;
min-width: 200px;
}
.custom-select {
appearance: none;
-webkit-appearance: none;
-moz-appearance: none;
width: 100%;
padding: 10px 20px;
border: 2px solid #e9ecef;
border-radius: 50px;
background-color: white;
font-size: 1rem;
font-weight: 600;
color: var(--dark);
cursor: pointer;
transition: var(--transition);
box-shadow: var(--shadow);
}
.custom-select:focus {
outline: none;
border-color: var(--primary);
}
.select-container::after {
content: "\f078";
font-family: "Font Awesome 6 Free";
font-weight: 900;
position: absolute;
top: 50%;
right: 20px;
transform: translateY(-50%);
pointer-events: none;
color: var(--primary);
}
</style>
</head>
<body>
<header>
<div class="container">
<h1><i class="fas fa-eye"></i> VisionAI</h1>
<p>Real-time interactive object detection powered by TensorFlow.js</p>
</div>
</header>
<div class="container">
<div class="main-content">
<section class="detection-section">
<h2 class="section-title"><i class="fas fa-camera"></i> Real-time Detection</h2>
<div class="controls">
<button id="startBtn" class="btn btn-success">
<i class="fas fa-play"></i> Start Webcam
</button>
<button id="stopBtn" class="btn btn-danger" disabled>
<i class="fas fa-stop"></i> Stop Webcam
</button>
<div class="toggle-container">
<span>Detection:</span>
<label class="switch">
<input type="checkbox" id="detectToggle" checked>
<span class="slider"></span>
</label>
</div>
<div class="select-container">
<select id="modelSelect" class="custom-select">
<option value="lite">Lite Model (Fast)</option>
<option value="default" selected>Default Model (Balanced)</option>
<option value="heavy">Heavy Model (Accurate)</option>
</select>
</div>
</div>
<div class="video-container">
<video id="video" autoplay muted playsinline></video>
<canvas id="canvas"></canvas>
</div>
<div class="loading" id="modelLoading" style="display: none;">
<div class="spinner"></div>
<p>Loading AI model. Please wait...</p>
</div>
<div id="statsContainer" class="stats-container">
<div class="stat-card">
<div class="stat-value" id="detectionCount">0</div>
<div class="stat-label">Objects Detected</div>
</div>
<div class="stat-card">
<div class="stat-value" id="fpsCount">0</div>
<div class="stat-label">FPS</div>
</div>
<div class="stat-card">
<div class="stat-value" id="avgConfidence">0%</div>
<div class="stat-label">Avg Confidence</div>
</div>
</div>
</section>
<section class="detection-section">
<h2 class="section-title"><i class="fas fa-image"></i> Image Detection</h2>
<div class="controls">
<label for="fileInput" class="file-label">
<i class="fas fa-upload"></i> Upload Image
</label>
<input type="file" id="fileInput" accept="image/*" class="file-input">
<button id="detectBtn" class="btn btn-accent" disabled>
<i class="fas fa-search"></i> Detect Objects
</button>
<button id="clearBtn" class="btn btn-outline">
<i class="fas fa-trash-alt"></i> Clear
</button>
</div>
<div id="imageContainer" style="display: flex; justify-content: center; margin-bottom: 20px;">
<img id="uploadedImage" style="max-width: 100%; border-radius: 10px; display: none; box-shadow: var(--shadow);">
<canvas id="imageCanvas" style="display: none; max-width: 100%; border-radius: 10px; box-shadow: var(--shadow);"></canvas>
</div>
<div class="loading" id="imageLoading" style="display: none;">
<div class="spinner"></div>
<p>Detecting objects in image...</p>
</div>
<div id="imageResultsContainer">
<h3 class="section-title"><i class="fas fa-list"></i> Detection Results</h3>
<div id="detectionResults" class="detection-results"></div>
</div>
</section>
</div>
</div>
<footer>
<div class="container">
<p>Interactive Object Detection Demo using TensorFlow.js COCO-SSD model</p>
<p>Created with <i class="fas fa-heart" style="color: var(--danger);"></i> for computer vision enthusiasts</p>
</div>
</footer>
<!-- Load TensorFlow.js and COCO-SSD model -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/[email protected]/dist/coco-ssd.min.js"></script>
<script>
// DOM Elements
const video = document.getElementById('video');
const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
const startBtn = document.getElementById('startBtn');
const stopBtn = document.getElementById('stopBtn');
const detectToggle = document.getElementById('detectToggle');
const modelSelect = document.getElementById('modelSelect');
const modelLoading = document.getElementById('modelLoading');
const detectionCount = document.getElementById('detectionCount');
const fpsCount = document.getElementById('fpsCount');
const avgConfidence = document.getElementById('avgConfidence');
const fileInput = document.getElementById('fileInput');
const uploadedImage = document.getElementById('uploadedImage');
const imageCanvas = document.getElementById('imageCanvas');
const imageCtx = imageCanvas.getContext('2d');
const detectBtn = document.getElementById('detectBtn');
const clearBtn = document.getElementById('clearBtn');
const imageLoading = document.getElementById('imageLoading');
const detectionResults = document.getElementById('detectionResults');
// Variables
let model = null;
let stream = null;
let detectionActive = true;
let lastTime = 0;
let frameCount = 0;
let fps = 0;
let objectsDetected = 0;
let totalConfidence = 0;
// Initialize
async function init() {
// Load model
modelLoading.style.display = 'flex';
try {
model = await cocoSsd.load({
base: modelSelect.value
});
console.log('Model loaded successfully');
} catch (error) {
console.error('Error loading model:', error);
alert('Failed to load the AI model. Please try again.');
}
modelLoading.style.display = 'none';
// Add event listeners
startBtn.addEventListener('click', startWebcam);
stopBtn.addEventListener('click', stopWebcam);
detectToggle.addEventListener('change', toggleDetection);
modelSelect.addEventListener('change', reloadModel);
fileInput.addEventListener('change', handleFileUpload);
detectBtn.addEventListener('click', detectInImage);
clearBtn.addEventListener('click', clearImageDetection);
// Start animate loop for FPS calculation
requestAnimationFrame(updateFPS);
}
// Webcam functions
async function startWebcam() {
try {
stream = await navigator.mediaDevices.getUserMedia({
video: {
facingMode: 'environment',
width: { ideal: 1280 },
height: { ideal: 720 }
},
audio: false
});
video.srcObject = stream;
startBtn.disabled = true;
stopBtn.disabled = false;
// Wait for video to be ready
video.onloadedmetadata = () => {
// Set canvas dimensions to match video
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
// Start detection loop
detectObjectsInVideo();
};
} catch (error) {
console.error('Error accessing webcam:', error);
alert('Could not access the webcam. Make sure you have granted camera permissions.');
}
}
function stopWebcam() {
if (stream) {
stream.getTracks().forEach(track => track.stop());
video.srcObject = null;
startBtn.disabled = false;
stopBtn.disabled = true;
ctx.clearRect(0, 0, canvas.width, canvas.height);
}
}
// Object detection in video
async function detectObjectsInVideo() {
if (!stream || !detectionActive || !model) return;
try {
// Perform detection
const predictions = await model.detect(video);
// Clear previous drawings
ctx.clearRect(0, 0, canvas.width, canvas.height);
// Draw new detections
drawDetections(predictions, ctx);
// Update stats
objectsDetected = predictions.length;
detectionCount.textContent = objectsDetected;
// Calculate average confidence
if (predictions.length > 0) {
totalConfidence = predictions.reduce((sum, pred) => sum + pred.score, 0);
avgConfidence.textContent = Math.round((totalConfidence / predictions.length) * 100) + '%';
} else {
avgConfidence.textContent = '0%';
}
// Call next frame
requestAnimationFrame(detectObjectsInVideo);
} catch (error) {
console.error('Detection error:', error);
setTimeout(detectObjectsInVideo, 1000); // Try again after delay
}
}
// Object detection in image
async function detectInImage() {
if (!uploadedImage.style.display || !model) return;
imageLoading.style.display = 'flex';
detectBtn.disabled = true;
try {
// Set canvas dimensions to match image
imageCanvas.width = uploadedImage.width;
imageCanvas.height = uploadedImage.height;
// Draw image on canvas
imageCtx.drawImage(uploadedImage, 0, 0, imageCanvas.width, imageCanvas.height);
// Perform detection
const predictions = await model.detect(imageCanvas);
// Show canvas (with detections)
uploadedImage.style.display = 'none';
imageCanvas.style.display = 'block';
// Draw detections
drawDetections(predictions, imageCtx);
// Display results
displayDetectionResults(predictions);
} catch (error) {
console.error('Image detection error:', error);
alert('Error detecting objects in image. Please try again.');
}
imageLoading.style.display = 'none';
detectBtn.disabled = false;
}
// Helper functions
function drawDetections(predictions, context) {
predictions.forEach(prediction => {
// Draw bounding box
context.beginPath();
context.rect(
prediction.bbox[0],
prediction.bbox[1],
prediction.bbox[2],
prediction.bbox[3]
);
context.lineWidth = 3;
context.strokeStyle = '#' + Math.floor(Math.random()*16777215).toString(16);
context.fillStyle = '#' + Math.floor(Math.random()*16777215).toString(16);
context.stroke();
// Draw label background
context.font = '16px Arial';
const textWidth = context.measureText(`${prediction.class} ${(prediction.score * 100).toFixed(1)}%`).width;
context.fillRect(
prediction.bbox[0],
prediction.bbox[1] - 25,
textWidth + 10,
25
);
// Draw label text
context.fillStyle = '#ffffff';
context.fillText(
`${prediction.class} ${(prediction.score * 100).toFixed(1)}%`,
prediction.bbox[0] + 5,
prediction.bbox[1] - 7
);
});
}
function displayDetectionResults(predictions) {
// Clear previous results
detectionResults.innerHTML = '';
// Group predictions by class and count occurrences
const classCounts = {};
const classConfidences = {};
predictions.forEach(pred => {
if (!classCounts[pred.class]) {
classCounts[pred.class] = 0;
classConfidences[pred.class] = 0;
}
classCounts[pred.class]++;
classConfidences[pred.class] += pred.score;
});
// Create cards for each detected class
Object.keys(classCounts).forEach(className => {
const count = classCounts[className];
const avgConfidence = (classConfidences[className] / count) * 100;
const card = document.createElement('div');
card.className = 'detection-card';
card.innerHTML = `
<div class="detection-label">
<i class="fas fa-tag"></i> ${className}
</div>
<div class="detection-confidence">
<div class="confidence-bar" style="width: ${avgConfidence}%"></div>
</div>
<div class="detection-stats">
<span>${count}x</span>
<span>${avgConfidence.toFixed(1)}%</span>
</div>
`;
detectionResults.appendChild(card);
});
// If no objects detected
if (predictions.length === 0) {
const noResults = document.createElement('div');
noResults.className = 'detection-card';
noResults.textContent = 'No objects detected';
detectionResults.appendChild(noResults);
}
}
function toggleDetection() {
detectionActive = detectToggle.checked;
if (detectionActive && stream) {
detectObjectsInVideo();
} else {
ctx.clearRect(0, 0, canvas.width, canvas.height);
}
}
async function reloadModel() {
modelLoading.style.display = 'flex';
if (model) {
model.dispose(); // Clean up previous model
}
try {
model = await cocoSsd.load({
base: modelSelect.value
});
console.log('Model reloaded with:', modelSelect.value);
} catch (error) {
console.error('Error reloading model:', error);
}
modelLoading.style.display = 'none';
// Restart detection if active
if (detectionActive && stream) {
detectObjectsInVideo();
}
// Redetect image if one is loaded
if (uploadedImage.style.display === 'block') {
detectInImage();
}
}
function handleFileUpload(event) {
const file = event.target.files[0];
if (file) {
const reader = new FileReader();
reader.onload = function(e) {
uploadedImage.src = e.target.result;
uploadedImage.style.display = 'block';
imageCanvas.style.display = 'none';
detectBtn.disabled = false;
};
reader.readAsDataURL(file);
}
}
function clearImageDetection() {
uploadedImage.src = '';
uploadedImage.style.display = 'none';
imageCanvas.style.display = 'none';
detectBtn.disabled = true;
fileInput.value = '';
detectionResults.innerHTML = '';
}
function updateFPS(timestamp) {
frameCount++;
if (timestamp >= lastTime + 1000) {
fps = Math.round((frameCount * 1000) / (timestamp - lastTime));
fpsCount.textContent = fps;
frameCount = 0;
lastTime = timestamp;
}
requestAnimationFrame(updateFPS);
}
// Initialize the app
document.addEventListener('DOMContentLoaded', init);
</script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <a href="https://enzostvs-deepsite.hf.space" style="color: #fff;" target="_blank" >DeepSite</a> <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;"></p></body>
</html>