leo-bourrel commited on
Commit
252219c
·
1 Parent(s): d304ca0

feat: add prompts

Browse files
prompts/built_elements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Identify any man-made structures in the image, including benches, kiosques, pergolas, playground equipment, paved paths, trash bins, street lamps, or information signs.
2
+
3
+ Do not use any external data sources.
4
+ If the image does not belong to any of the categories, return 'Other'.
5
+ If the image is not clear enough to make a decision, return 'Not clear'.
6
+ If the image is not relevant to the task, return 'Irrelevant'.
7
+ If the image can be classified into multiple categories, return the most relevant one.
8
+
9
+ Results must be consistent across multiple runs of the model on the same image.
10
+ Results must be JSON serializable.
11
+
12
+ **Output format:**
13
+ ```
14
+ {
15
+ "elements": ["benches", "kiosques", "pergolas", "..."]
16
+ }
17
+ ```
prompts/fauna_identification.txt ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Analyze the image and identify any animals present. Classify detected fauna into one of the following categories:
2
+ - Birds
3
+ - Insects
4
+ - Rodents
5
+ - Foxes, deer, or other large mammals
6
+ - Amphibians
7
+
8
+ For each detected animal, provide its type and count.
9
+
10
+ Do not use any external data sources.
11
+ If no fauna is detected, return an empty list.
12
+ If the image is not clear enough to make a decision, return 'Not clear'.
13
+ If the image is not relevant to the task, return 'Irrelevant'.
14
+
15
+ Results must be consistent across multiple runs of the model on the same image.
16
+ Results must be JSON serializable.
17
+
18
+ **Output format:**
19
+ ```
20
+ {
21
+ "fauna": [
22
+ {
23
+ "type": "Birds",
24
+ "count": 3
25
+ },
26
+ {
27
+ "type": "Insects",
28
+ "count": 5
29
+ }
30
+ ]
31
+ }
32
+ ```
prompts/general_classification.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Analyze the image and detect any man-made structures. Identify and list the following elements if they are present:
2
+ - Benches, kiosques, pergolas
3
+ - Playgrounds (swings, slides)
4
+ - Paved or asphalted paths
5
+ - Trash bins, street lamps, and information signs
6
+
7
+ Do not use any external data sources.
8
+ If no built elements are detected, return an empty list.
9
+ If the image is not clear enough to make a decision, return 'Not clear'.
10
+ If the image is not relevant to the task, return 'Irrelevant'.
11
+
12
+ Results must be consistent across multiple runs of the model on the same image.
13
+ Results must be JSON serializable.
14
+
15
+ **Output format:**
16
+ ```
17
+ {
18
+ "classification": "Espaces verts artificialisés"
19
+ }
20
+ ```
prompts/human_activity.txt ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Analyze the image and detect any traces of human activity. Identify and categorize them as:
2
+ - Picnic remains
3
+ - Trash or debris
4
+ - Footprints or worn paths
5
+ - Abandoned objects
6
+
7
+ For each detected trace, provide its type.
8
+
9
+ Do not use any external data sources.
10
+ If no traces of human activity are detected, return an empty list.
11
+ If the image is not clear enough to make a decision, return 'Not clear'.
12
+ If the image is not relevant to the task, return 'Irrelevant'.
13
+
14
+ Results must be consistent across multiple runs of the model on the same image.
15
+ Results must be JSON serializable.
16
+
17
+ **Output format:**
18
+ ```
19
+ {
20
+ "traces": [
21
+ {
22
+ "type": "Picnic remains"
23
+ },
24
+ {
25
+ "type": "Trash or debris"
26
+ },
27
+ {
28
+ "type": "Footprints or worn paths"
29
+ },
30
+ {
31
+ "type": "Abandoned objects"
32
+ }
33
+ ]
34
+ }
35
+ ```
prompts/human_detection.txt ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Analyze the image and detect human presence. Identify and categorize detected individuals as:
2
+ - Pedestrians
3
+ - Cyclists
4
+ - People with strollers
5
+
6
+ Count the number of individuals for each category.
7
+
8
+ Do not use any external data sources.
9
+ If no human presence is detected, return an empty object.
10
+ If the image is not clear enough to make a decision, return 'Not clear'.
11
+ If the image is not relevant to the task, return 'Irrelevant'.
12
+
13
+ Results must be consistent across multiple runs of the model on the same image.
14
+ Results must be JSON serializable.
15
+
16
+ **Output format:**
17
+ ````
18
+ {
19
+ "pedestrians": 0,
20
+ "cyclists": 0,
21
+ "people_with_strollers": 0
22
+ }
23
+ ```
prompts/vegetation_detection.txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Analyze the image and identify the types of vegetation present. Categorize vegetation into one or more of the following types:
2
+ - Maintained (e.g., trimmed hedges, flower beds, decorative shrubs, lawns)
3
+ - Mixed (e.g., tall grass, prairies, untrimmed shrubs, scattered trees)
4
+ - Dense and wild (e.g., forests, undergrowth, thick bushes, wetlands)
5
+
6
+ Do not use any external data sources.
7
+ If no vegetation is detected, return an empty list.
8
+ If the image is not clear enough to make a decision, return 'Not clear'.
9
+ If the image is not relevant to the task, return 'Irrelevant'.
10
+
11
+ Results must be consistent across multiple runs of the model on the same image.
12
+ Results must be JSON serializable.
13
+
14
+ **Output format:**
15
+ ```
16
+ {
17
+ "vegetation": [ "Maintained", "Mixed" ]
18
+ }
19
+ ```
prompts/water_elements.txt ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Analyze the image and detect any water elements. Identify and classify them as:
2
+ - Artificial (e.g., fountains, artificial ponds)
3
+ - Natural (e.g., rivers, lakes, waterfalls)
4
+
5
+ For each detected water element, provide its type and classification.
6
+
7
+ Do not use any external data sources.
8
+ If no water elements are detected, return an empty list.
9
+ If the image is not clear enough to make a decision, return 'Not clear'.
10
+ If the image is not relevant to the task, return 'Irrelevant'.
11
+
12
+ Results must be consistent across multiple runs of the model on the same image.
13
+ Results must be JSON serializable.
14
+
15
+ **Output format:**
16
+ ```
17
+ {
18
+ "water_elements": [
19
+ {
20
+ "type": "Artificial",
21
+ "classification": "Fountain"
22
+ },
23
+ {
24
+ "type": "Natural",
25
+ "classification": "River"
26
+ }
27
+ ]
28
+ }
29
+ ```