Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn.functional as F | |
| def crop(image, i, j, h, w): | |
| """ | |
| Args: | |
| image (torch.tensor): Image to be cropped. Size is (C, H, W) | |
| """ | |
| if len(image.size()) != 3: | |
| raise ValueError("image should be a 3D tensor") | |
| return image[..., i : i + h, j : j + w] | |
| def resize(image, target_size, interpolation_mode): | |
| if len(target_size) != 2: | |
| raise ValueError(f"target size should be tuple (height, width), instead got {target_size}") | |
| return F.interpolate(image.unsqueeze(0), size=target_size, mode=interpolation_mode, align_corners=False).squeeze(0) | |
| def resize_scale(image, target_size, interpolation_mode): | |
| if len(target_size) != 2: | |
| raise ValueError(f"target size should be tuple (height, width), instead got {target_size}") | |
| H, W = image.size(-2), image.size(-1) | |
| scale_ = target_size[0] / min(H, W) | |
| return F.interpolate(image.unsqueeze(0), scale_factor=scale_, mode=interpolation_mode, align_corners=False).squeeze(0) | |
| def resized_crop(image, i, j, h, w, size, interpolation_mode="bilinear"): | |
| """ | |
| Do spatial cropping and resizing to the image | |
| Args: | |
| image (torch.tensor): Image to be cropped. Size is (C, H, W) | |
| i (int): i in (i,j) i.e coordinates of the upper left corner. | |
| j (int): j in (i,j) i.e coordinates of the upper left corner. | |
| h (int): Height of the cropped region. | |
| w (int): Width of the cropped region. | |
| size (tuple(int, int)): height and width of resized image | |
| Returns: | |
| image (torch.tensor): Resized and cropped image. Size is (C, H, W) | |
| """ | |
| if len(image.size()) != 3: | |
| raise ValueError("image should be a 3D torch.tensor") | |
| image = crop(image, i, j, h, w) | |
| image = resize(image, size, interpolation_mode) | |
| return image | |
| def center_crop(image, crop_size): | |
| if len(image.size()) != 3: | |
| raise ValueError("image should be a 3D torch.tensor") | |
| h, w = image.size(-2), image.size(-1) | |
| th, tw = crop_size | |
| if h < th or w < tw: | |
| raise ValueError("height and width must be no smaller than crop_size") | |
| i = int(round((h - th) / 2.0)) | |
| j = int(round((w - tw) / 2.0)) | |
| return crop(image, i, j, th, tw) | |
| def center_crop_using_short_edge(image): | |
| if len(image.size()) != 3: | |
| raise ValueError("image should be a 3D torch.tensor") | |
| h, w = image.size(-2), image.size(-1) | |
| if h < w: | |
| th, tw = h, h | |
| i = 0 | |
| j = int(round((w - tw) / 2.0)) | |
| else: | |
| th, tw = w, w | |
| i = int(round((h - th) / 2.0)) | |
| j = 0 | |
| return crop(image, i, j, th, tw) | |
| class CenterCropResizeImage: | |
| """ | |
| Resize the image while maintaining aspect ratio, and then crop it to the desired size. | |
| The resizing is done such that the area of padding/cropping is minimized. | |
| """ | |
| def __init__(self, size, interpolation_mode="bilinear"): | |
| if isinstance(size, tuple): | |
| if len(size) != 2: | |
| raise ValueError(f"Size should be a tuple (height, width), instead got {size}") | |
| self.size = size | |
| else: | |
| self.size = (size, size) | |
| self.interpolation_mode = interpolation_mode | |
| def __call__(self, image): | |
| """ | |
| Args: | |
| image (torch.Tensor): Image to be resized and cropped. Size is (C, H, W) | |
| Returns: | |
| torch.Tensor: Resized and cropped image. Size is (C, target_height, target_width) | |
| """ | |
| target_height, target_width = self.size | |
| target_aspect = target_width / target_height | |
| # Get current image shape and aspect ratio | |
| _, height, width = image.shape | |
| height, width = float(height), float(width) | |
| current_aspect = width / height | |
| # Calculate crop dimensions | |
| if current_aspect > target_aspect: | |
| # Image is wider than target, crop width | |
| crop_height = height | |
| crop_width = height * target_aspect | |
| else: | |
| # Image is taller than target, crop height | |
| crop_height = width / target_aspect | |
| crop_width = width | |
| # Calculate crop coordinates (center crop) | |
| y1 = (height - crop_height) / 2 | |
| x1 = (width - crop_width) / 2 | |
| # Perform the crop | |
| cropped_image = crop(image, int(y1), int(x1), int(crop_height), int(crop_width)) | |
| # Resize the cropped image to the target size | |
| resized_image = resize(cropped_image, self.size, self.interpolation_mode) | |
| return resized_image | |
| # Example usage | |
| if __name__ == "__main__": | |
| # Create a sample image tensor | |
| sample_image = torch.rand(3, 480, 640) # (C, H, W) | |
| # Initialize the transform | |
| transform = CenterCropResizeImage(size=(224, 224), interpolation_mode="bilinear") | |
| # Apply the transform | |
| transformed_image = transform(sample_image) | |
| print(f"Original image shape: {sample_image.shape}") | |
| print(f"Transformed image shape: {transformed_image.shape}") |