leenag commited on
Commit
09a9b03
·
verified ·
1 Parent(s): 5d13a75

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -56
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
  import torch
3
  import soundfile as sf
@@ -34,6 +35,7 @@ def get_pipeline(language):
34
  )
35
  return pipelines[language]
36
 
 
37
  def transcribe(audio, language):
38
  """Transcribes speech from an audio file based on selected language."""
39
  try:
@@ -78,59 +80,3 @@ iface = gr.Interface(
78
 
79
  iface.launch()
80
 
81
-
82
- # import gradio as gr
83
- # import torch
84
- # import soundfile as sf
85
- # from transformers import pipeline
86
-
87
- # device = "cuda:0" if torch.cuda.is_available() else "cpu"
88
- # pipe = pipeline(
89
- # "automatic-speech-recognition",
90
- # model="leenag/Tamil_ASR",
91
- # chunk_length_s=10,
92
- # device=device,
93
- # )
94
-
95
- # def transcribe(audio):
96
- # """Transcribes Tamil speech from an audio file."""
97
- # try:
98
- # if audio is None:
99
- # return "Please record or upload an audio file."
100
-
101
- # print(f"[DEBUG] Received audio: {audio}")
102
-
103
- # # Handle filepath case from Gradio
104
- # audio_path = audio if isinstance(audio, str) else audio.get("name", None)
105
- # if audio_path is None:
106
- # return "Could not read audio file."
107
-
108
- # print(f"[DEBUG] Reading audio file: {audio_path}")
109
- # audio_data, sample_rate = sf.read(audio_path)
110
-
111
- # print(f"[DEBUG] Audio sample rate: {sample_rate}, shape: {audio_data.shape}")
112
-
113
- # transcription = pipe(
114
- # {"array": audio_data, "sampling_rate": sample_rate},
115
- # chunk_length_s=10,
116
- # batch_size=8,
117
- # )["text"]
118
-
119
- # print(f"[DEBUG] Transcription: {transcription}")
120
- # return transcription
121
-
122
- # except Exception as e:
123
- # import traceback
124
- # print("[ERROR] Exception during transcription:")
125
- # traceback.print_exc()
126
- # return f"Error: {str(e)}"
127
-
128
- # iface = gr.Interface(
129
- # fn=transcribe,
130
- # inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
131
- # outputs="text",
132
- # title="Tamil Speech Recognition",
133
- # description="Record or upload Tamil speech and submit to get the transcribed text.",
134
- # )
135
-
136
- # iface.launch()
 
1
+ # Gradio for Multi ASR
2
  import gradio as gr
3
  import torch
4
  import soundfile as sf
 
35
  )
36
  return pipelines[language]
37
 
38
+ # Transcription code with error debugging
39
  def transcribe(audio, language):
40
  """Transcribes speech from an audio file based on selected language."""
41
  try:
 
80
 
81
  iface.launch()
82