Spaces:
Runtime error
Runtime error
Upload glide_text2im/model_creation.py
Browse files- glide_text2im/model_creation.py +195 -0
glide_text2im/model_creation.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from glide_text2im.gaussian_diffusion import get_named_beta_schedule
|
2 |
+
from glide_text2im.respace import SpacedDiffusion, space_timesteps
|
3 |
+
from glide_text2im.text2im_model import (
|
4 |
+
InpaintText2ImUNet,
|
5 |
+
SuperResInpaintText2ImUnet,
|
6 |
+
SuperResText2ImUNet,
|
7 |
+
Text2ImUNet,
|
8 |
+
)
|
9 |
+
from glide_text2im.tokenizer.bpe import get_encoder
|
10 |
+
|
11 |
+
|
12 |
+
def model_and_diffusion_defaults():
|
13 |
+
return dict(
|
14 |
+
image_size=64,
|
15 |
+
num_channels=192,
|
16 |
+
num_res_blocks=3,
|
17 |
+
channel_mult="",
|
18 |
+
num_heads=1,
|
19 |
+
num_head_channels=64,
|
20 |
+
num_heads_upsample=-1,
|
21 |
+
attention_resolutions="32,16,8",
|
22 |
+
dropout=0.1,
|
23 |
+
text_ctx=128,
|
24 |
+
xf_width=512,
|
25 |
+
xf_layers=16,
|
26 |
+
xf_heads=8,
|
27 |
+
xf_final_ln=True,
|
28 |
+
xf_padding=True,
|
29 |
+
diffusion_steps=1000,
|
30 |
+
noise_schedule="squaredcos_cap_v2",
|
31 |
+
timestep_respacing="",
|
32 |
+
use_scale_shift_norm=True,
|
33 |
+
resblock_updown=True,
|
34 |
+
use_fp16=True,
|
35 |
+
cache_text_emb=False,
|
36 |
+
inpaint=False,
|
37 |
+
super_res=False,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
def model_and_diffusion_defaults_upsampler():
|
42 |
+
result = model_and_diffusion_defaults()
|
43 |
+
result.update(
|
44 |
+
dict(
|
45 |
+
image_size=256,
|
46 |
+
num_res_blocks=2,
|
47 |
+
noise_schedule="linear",
|
48 |
+
super_res=True,
|
49 |
+
)
|
50 |
+
)
|
51 |
+
return result
|
52 |
+
|
53 |
+
|
54 |
+
def create_model_and_diffusion(
|
55 |
+
image_size,
|
56 |
+
num_channels,
|
57 |
+
num_res_blocks,
|
58 |
+
channel_mult,
|
59 |
+
num_heads,
|
60 |
+
num_head_channels,
|
61 |
+
num_heads_upsample,
|
62 |
+
attention_resolutions,
|
63 |
+
dropout,
|
64 |
+
text_ctx,
|
65 |
+
xf_width,
|
66 |
+
xf_layers,
|
67 |
+
xf_heads,
|
68 |
+
xf_final_ln,
|
69 |
+
xf_padding,
|
70 |
+
diffusion_steps,
|
71 |
+
noise_schedule,
|
72 |
+
timestep_respacing,
|
73 |
+
use_scale_shift_norm,
|
74 |
+
resblock_updown,
|
75 |
+
use_fp16,
|
76 |
+
cache_text_emb,
|
77 |
+
inpaint,
|
78 |
+
super_res,
|
79 |
+
):
|
80 |
+
model = create_model(
|
81 |
+
image_size,
|
82 |
+
num_channels,
|
83 |
+
num_res_blocks,
|
84 |
+
channel_mult=channel_mult,
|
85 |
+
attention_resolutions=attention_resolutions,
|
86 |
+
num_heads=num_heads,
|
87 |
+
num_head_channels=num_head_channels,
|
88 |
+
num_heads_upsample=num_heads_upsample,
|
89 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
90 |
+
dropout=dropout,
|
91 |
+
text_ctx=text_ctx,
|
92 |
+
xf_width=xf_width,
|
93 |
+
xf_layers=xf_layers,
|
94 |
+
xf_heads=xf_heads,
|
95 |
+
xf_final_ln=xf_final_ln,
|
96 |
+
xf_padding=xf_padding,
|
97 |
+
resblock_updown=resblock_updown,
|
98 |
+
use_fp16=use_fp16,
|
99 |
+
cache_text_emb=cache_text_emb,
|
100 |
+
inpaint=inpaint,
|
101 |
+
super_res=super_res,
|
102 |
+
)
|
103 |
+
diffusion = create_gaussian_diffusion(
|
104 |
+
steps=diffusion_steps,
|
105 |
+
noise_schedule=noise_schedule,
|
106 |
+
timestep_respacing=timestep_respacing,
|
107 |
+
)
|
108 |
+
return model, diffusion
|
109 |
+
|
110 |
+
|
111 |
+
def create_model(
|
112 |
+
image_size,
|
113 |
+
num_channels,
|
114 |
+
num_res_blocks,
|
115 |
+
channel_mult,
|
116 |
+
attention_resolutions,
|
117 |
+
num_heads,
|
118 |
+
num_head_channels,
|
119 |
+
num_heads_upsample,
|
120 |
+
use_scale_shift_norm,
|
121 |
+
dropout,
|
122 |
+
text_ctx,
|
123 |
+
xf_width,
|
124 |
+
xf_layers,
|
125 |
+
xf_heads,
|
126 |
+
xf_final_ln,
|
127 |
+
xf_padding,
|
128 |
+
resblock_updown,
|
129 |
+
use_fp16,
|
130 |
+
cache_text_emb,
|
131 |
+
inpaint,
|
132 |
+
super_res,
|
133 |
+
):
|
134 |
+
if channel_mult == "":
|
135 |
+
if image_size == 256:
|
136 |
+
channel_mult = (1, 1, 2, 2, 4, 4)
|
137 |
+
elif image_size == 128:
|
138 |
+
channel_mult = (1, 1, 2, 3, 4)
|
139 |
+
elif image_size == 64:
|
140 |
+
channel_mult = (1, 2, 3, 4)
|
141 |
+
else:
|
142 |
+
raise ValueError(f"unsupported image size: {image_size}")
|
143 |
+
else:
|
144 |
+
channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(","))
|
145 |
+
assert 2 ** (len(channel_mult) + 2) == image_size
|
146 |
+
|
147 |
+
attention_ds = []
|
148 |
+
for res in attention_resolutions.split(","):
|
149 |
+
attention_ds.append(image_size // int(res))
|
150 |
+
|
151 |
+
if inpaint and super_res:
|
152 |
+
model_cls = SuperResInpaintText2ImUnet
|
153 |
+
elif inpaint:
|
154 |
+
model_cls = InpaintText2ImUNet
|
155 |
+
elif super_res:
|
156 |
+
model_cls = SuperResText2ImUNet
|
157 |
+
else:
|
158 |
+
model_cls = Text2ImUNet
|
159 |
+
return model_cls(
|
160 |
+
text_ctx=text_ctx,
|
161 |
+
xf_width=xf_width,
|
162 |
+
xf_layers=xf_layers,
|
163 |
+
xf_heads=xf_heads,
|
164 |
+
xf_final_ln=xf_final_ln,
|
165 |
+
tokenizer=get_encoder(),
|
166 |
+
xf_padding=xf_padding,
|
167 |
+
in_channels=3,
|
168 |
+
model_channels=num_channels,
|
169 |
+
out_channels=6,
|
170 |
+
num_res_blocks=num_res_blocks,
|
171 |
+
attention_resolutions=tuple(attention_ds),
|
172 |
+
dropout=dropout,
|
173 |
+
channel_mult=channel_mult,
|
174 |
+
use_fp16=use_fp16,
|
175 |
+
num_heads=num_heads,
|
176 |
+
num_head_channels=num_head_channels,
|
177 |
+
num_heads_upsample=num_heads_upsample,
|
178 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
179 |
+
resblock_updown=resblock_updown,
|
180 |
+
cache_text_emb=cache_text_emb,
|
181 |
+
)
|
182 |
+
|
183 |
+
|
184 |
+
def create_gaussian_diffusion(
|
185 |
+
steps,
|
186 |
+
noise_schedule,
|
187 |
+
timestep_respacing,
|
188 |
+
):
|
189 |
+
betas = get_named_beta_schedule(noise_schedule, steps)
|
190 |
+
if not timestep_respacing:
|
191 |
+
timestep_respacing = [steps]
|
192 |
+
return SpacedDiffusion(
|
193 |
+
use_timesteps=space_timesteps(steps, timestep_respacing),
|
194 |
+
betas=betas,
|
195 |
+
)
|