Spaces:
Runtime error
Runtime error
""" | |
Transformer implementation adapted from CLIP ViT: | |
https://github.com/openai/CLIP/blob/4c0275784d6d9da97ca1f47eaaee31de1867da91/clip/model.py | |
""" | |
import math | |
import torch as th | |
import torch.nn as nn | |
def convert_module_to_f16(l): | |
""" | |
Convert primitive modules to float16. | |
""" | |
if isinstance(l, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): | |
l.weight.data = l.weight.data.half() | |
if l.bias is not None: | |
l.bias.data = l.bias.data.half() | |
class LayerNorm(nn.LayerNorm): | |
""" | |
Implementation that supports fp16 inputs but fp32 gains/biases. | |
""" | |
def forward(self, x: th.Tensor): | |
return super().forward(x.float()).to(x.dtype) | |
class MultiheadAttention(nn.Module): | |
def __init__(self, n_ctx, width, heads): | |
super().__init__() | |
self.n_ctx = n_ctx | |
self.width = width | |
self.heads = heads | |
self.c_qkv = nn.Linear(width, width * 3) | |
self.c_proj = nn.Linear(width, width) | |
self.attention = QKVMultiheadAttention(heads, n_ctx) | |
def forward(self, x): | |
x = self.c_qkv(x) | |
x = self.attention(x) | |
x = self.c_proj(x) | |
return x | |
class MLP(nn.Module): | |
def __init__(self, width): | |
super().__init__() | |
self.width = width | |
self.c_fc = nn.Linear(width, width * 4) | |
self.c_proj = nn.Linear(width * 4, width) | |
self.gelu = nn.GELU() | |
def forward(self, x): | |
return self.c_proj(self.gelu(self.c_fc(x))) | |
class QKVMultiheadAttention(nn.Module): | |
def __init__(self, n_heads: int, n_ctx: int): | |
super().__init__() | |
self.n_heads = n_heads | |
self.n_ctx = n_ctx | |
def forward(self, qkv): | |
bs, n_ctx, width = qkv.shape | |
attn_ch = width // self.n_heads // 3 | |
scale = 1 / math.sqrt(math.sqrt(attn_ch)) | |
qkv = qkv.view(bs, n_ctx, self.n_heads, -1) | |
q, k, v = th.split(qkv, attn_ch, dim=-1) | |
weight = th.einsum( | |
"bthc,bshc->bhts", q * scale, k * scale | |
) # More stable with f16 than dividing afterwards | |
wdtype = weight.dtype | |
weight = th.softmax(weight.float(), dim=-1).type(wdtype) | |
return th.einsum("bhts,bshc->bthc", weight, v).reshape(bs, n_ctx, -1) | |
class ResidualAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
n_ctx: int, | |
width: int, | |
heads: int, | |
): | |
super().__init__() | |
self.attn = MultiheadAttention( | |
n_ctx, | |
width, | |
heads, | |
) | |
self.ln_1 = LayerNorm(width) | |
self.mlp = MLP(width) | |
self.ln_2 = LayerNorm(width) | |
def forward(self, x: th.Tensor): | |
x = x + self.attn(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class Transformer(nn.Module): | |
def __init__( | |
self, | |
n_ctx: int, | |
width: int, | |
layers: int, | |
heads: int, | |
): | |
super().__init__() | |
self.n_ctx = n_ctx | |
self.width = width | |
self.layers = layers | |
self.resblocks = nn.ModuleList( | |
[ | |
ResidualAttentionBlock( | |
n_ctx, | |
width, | |
heads, | |
) | |
for _ in range(layers) | |
] | |
) | |
def forward(self, x: th.Tensor): | |
for block in self.resblocks: | |
x = block(x) | |
return x | |