File size: 14,386 Bytes
c8c8070 558e9ac 1c05f09 f930069 45a9874 43ce33c 45a9874 1c05f09 93c46ef f930069 1c05f09 957627e 85d7c4d 957627e 66924fd 85d7c4d 957627e 977e95b 45a9874 43ce33c 23c4caf b15c3f8 558e9ac 85d7c4d 1c05f09 558e9ac f0321ce 1c05f09 45a9874 93c46ef 43ce33c 93c46ef 43ce33c 1836e90 65d4c90 1836e90 43ce33c 93c46ef 43ce33c 1836e90 1c05f09 1836e90 977e95b 1c05f09 34ab564 45a9874 f930069 1c05f09 93c46ef 1c05f09 93c46ef 1c05f09 1836e90 72553ca c8c8070 1c05f09 72553ca 1c05f09 23c4caf 1c05f09 72553ca 1c05f09 8324cfa 1c05f09 72553ca 1836e90 1c05f09 93c46ef 45a9874 93c46ef 45a9874 1c05f09 1836e90 1c05f09 93c46ef 1c05f09 45a9874 93c46ef 1c05f09 93c46ef c8c8070 72553ca c8c8070 1836e90 8e7ba9f 1836e90 1c05f09 c8c8070 1c05f09 c8c8070 65d4c90 7764644 65d4c90 85d7c4d 65d4c90 85d7c4d 1c05f09 85d7c4d 1836e90 1c05f09 1836e90 23c4caf 85d7c4d 66924fd 85d7c4d d8ed522 1836e90 d8ed522 85d7c4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import gradio as gr
import os
import sys
import json
import random
import hashlib
import requests
import tempfile
from datetime import datetime
from openai import OpenAI
from huggingface_hub import upload_file, list_repo_files, create_repo, hf_hub_download
MODEL = "gpt-4.1-mini"
def get_env_bool(key, default="False"):
value = os.getenv(key, default)
if isinstance(value, bool):
return value
return str(value).lower() in ('true', '1', 'yes', 'on')
def get_env_list(key, default=""):
value = os.getenv(key, default)
if not value or value == "":
return []
if value.startswith('[') and value.endswith(']'):
try:
parsed = json.loads(value)
if isinstance(parsed, list):
return [str(item).strip() for item in parsed if str(item).strip()]
except json.JSONDecodeError:
pass
return [item.strip() for item in str(value).split(',') if item.strip()]
DISABLED = get_env_bool("DISABLED", "False")
OPENAI_API_KEYS = get_env_list("OPENAI_API_KEYS", "")
NUM_THREADS = int(os.getenv("NUM_THREADS", "4"))
IP_SALT = os.getenv("IP_SALT", "latamgpt-default-salt-2025")
HF_TOKEN = os.getenv("HF_TOKEN")
DATASET_REPO = os.getenv("DATASET_REPO", "latam-gpt/copuchat-conversations")
def exception_handler(exception_type, exception, traceback):
print(f"{exception_type.__name__}: {exception}")
sys.excepthook = exception_handler
sys.tracebacklimit = 0
def get_user_fingerprint(request):
real_ip = (
request.headers.get('x-forwarded-for', '').split(',')[0].strip() or
request.headers.get('x-real-ip', '') or
getattr(request, 'client', {}).get('host', 'unknown')
)
fingerprint_data = f"{real_ip}:{IP_SALT}"
user_fingerprint = hashlib.sha256(fingerprint_data.encode()).hexdigest()[:16]
return real_ip, user_fingerprint
def get_country_from_ip(ip):
try:
response = requests.get(f"http://ip-api.com/json/{ip}", timeout=2)
if response.status_code == 200:
data = response.json()
return {
"country": data.get('country', 'Unknown'),
"country_code": data.get('countryCode', 'UN'),
"region": data.get('regionName', 'Unknown')
}
except:
pass
return {"country": "Unknown", "country_code": "UN", "region": "Unknown"}
def generate_conversation_hash(session_id, user_fingerprint):
return hashlib.sha256(f"{session_id}:{user_fingerprint}".encode()).hexdigest()[:12]
def generate_conversation_filename(session_id, user_fingerprint, timestamp):
conversation_hash = generate_conversation_hash(session_id, user_fingerprint)
timestamp_str = timestamp.strftime('%Y%m%d_%H%M%S_%f')
return f"conversations/{timestamp_str}_{conversation_hash}.jsonl"
def get_conversation_files():
if not HF_TOKEN:
return []
try:
files = list_repo_files(repo_id=DATASET_REPO, repo_type="dataset", token=HF_TOKEN)
return sorted([f for f in files if f.startswith("conversations/") and f.endswith(".jsonl")])
except:
return []
def get_global_chat_counter():
conversation_files = get_conversation_files()
return len(conversation_files) + 1
def find_existing_conversation(session_id, user_fingerprint):
conversation_hash = generate_conversation_hash(session_id, user_fingerprint)
conversation_files = get_conversation_files()
matching_files = [f for f in conversation_files if f.endswith(f"_{conversation_hash}.jsonl")]
if matching_files:
try:
latest_file = matching_files[-1]
local_file = hf_hub_download(
repo_id=DATASET_REPO,
repo_type="dataset",
filename=latest_file,
token=HF_TOKEN
)
with open(local_file, 'r') as f:
return json.load(f)
except:
pass
return None
def upload_conversation(conversation_data, session_id, user_fingerprint):
if not HF_TOKEN:
return
try:
try:
create_repo(
repo_id=DATASET_REPO,
repo_type="dataset",
private=True,
exist_ok=True,
token=HF_TOKEN
)
except:
pass
conversation_hash = generate_conversation_hash(session_id, user_fingerprint)
conversation_files = get_conversation_files()
matching_files = [f for f in conversation_files if f.endswith(f"_{conversation_hash}.jsonl")]
if matching_files:
filename = matching_files[-1]
else:
filename = generate_conversation_filename(session_id, user_fingerprint, datetime.now())
with tempfile.NamedTemporaryFile(mode='w', suffix='.jsonl', delete=False) as f:
json.dump(conversation_data, f)
temp_path = f.name
upload_file(
path_or_fileobj=temp_path,
path_in_repo=filename,
repo_id=DATASET_REPO,
repo_type="dataset",
token=HF_TOKEN
)
os.unlink(temp_path)
except Exception as e:
print(f"Upload failed: {e}")
GLOBAL_CHAT_COUNTER = get_global_chat_counter()
print(f"Starting global chat counter at: {GLOBAL_CHAT_COUNTER}")
def predict(inputs, top_p, temperature, chat_counter, chatbot, history, request: gr.Request):
global GLOBAL_CHAT_COUNTER
if not OPENAI_API_KEYS or not OPENAI_API_KEYS[0]:
yield [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)], history, chat_counter, "No API keys configured", gr.update(interactive=True), gr.update(interactive=True)
return
api_key = random.choice(OPENAI_API_KEYS)
client = OpenAI(api_key=api_key)
session_id = getattr(request, 'session_hash', 'unknown')
real_ip, user_fingerprint = get_user_fingerprint(request)
geo_info = get_country_from_ip(real_ip)
headers_dict = {key.decode('utf-8'): value.decode('utf-8') for key, value in request.headers.raw}
existing_conversation = find_existing_conversation(session_id, user_fingerprint) if chat_counter == 0 else None
if existing_conversation:
history = existing_conversation['messages_history']
chat_counter = existing_conversation['chat_counter']
chatbot = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)]
messages = []
for i, data in enumerate(history):
role = 'user' if i % 2 == 0 else 'assistant'
messages.append({"role": role, "content": data})
messages.append({"role": "user", "content": inputs})
GLOBAL_CHAT_COUNTER += 1
global_counter = GLOBAL_CHAT_COUNTER
chat_counter += 1
history.append(inputs)
token_counter = 0
partial_words = ""
try:
stream = client.chat.completions.create(
model=MODEL,
messages=messages,
temperature=temperature,
top_p=top_p,
stream=True,
presence_penalty=0,
frequency_penalty=0,
max_tokens=4096
)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
partial_words += chunk.choices[0].delta.content
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
token_counter += 1
yield [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)], history, chat_counter, "200", gr.update(interactive=False), gr.update(interactive=False)
yield [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)], history, chat_counter, "200", gr.update(interactive=True), gr.update(interactive=True)
except Exception as e:
print(f'Error API OpenAI: {e}')
yield [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)], history, chat_counter, str(e), gr.update(interactive=True), gr.update(interactive=True)
conversation_data = {
"session_id": session_id,
"user_fingerprint": user_fingerprint,
"conversation_id": f"{session_id}_{datetime.now().strftime('%Y%m%d_%H')}",
"conversation_hash": generate_conversation_hash(session_id, user_fingerprint),
"country": geo_info["country"],
"country_code": geo_info["country_code"],
"region": geo_info["region"],
"chat_counter": chat_counter,
"global_chat_counter": global_counter,
"model": MODEL,
"messages": messages,
"messages_history": history,
"response": partial_words,
"headers": headers_dict,
"temperature": temperature,
"top_p": top_p,
"token_counter": token_counter,
"timestamp": datetime.now().isoformat(),
"last_updated": datetime.now().isoformat()
}
print(json.dumps({k: v for k, v in conversation_data.items() if k != 'messages_history'}))
upload_conversation(conversation_data, session_id, user_fingerprint)
def reset_textbox():
return gr.update(value='', interactive=False), gr.update(interactive=False)
title = """<h1 align="center">Copuchat: Recolecci贸n de datos para LatamGPT</h1>"""
if DISABLED:
title = """<h1 align="center" style="color:red">Esta app alcanz贸 su l铆mite de uso. Porfavor intenta reingresar ma帽ana.</h1>"""
description = """Language models can be conditioned to act like dialogue agents through a conversational prompt that typically takes the form:
```
User: <utterance>
Assistant: <utterance>
User: <utterance>
Assistant: <utterance>
...
```
In this app, you can explore the outputs of GPT-4.1 mini while contributing to LatamGPT research.
"""
with gr.Blocks(css="""
#col_container {
margin-left: auto;
margin-right: auto;
max-width: 1200px;
width: 95%;
}
#chatbot {
height: 1200px;
overflow: auto;
}
.gradio-container {
max-width: unset !important;
}
#component-0 {
max-width: unset;
}
""") as demo:
gr.HTML(title)
with gr.Column(elem_id="col_container", visible=False) as main_block:
chatbot = gr.Chatbot(elem_id='chatbot')
inputs = gr.Textbox(
placeholder="",
label="Escribe tu mensaje y presiona Enter",
lines=3,
max_lines=8,
scale=1
)
state = gr.State([])
with gr.Row():
with gr.Column(scale=7):
b1 = gr.Button(visible=not DISABLED)
with gr.Column(scale=3):
server_status_code = gr.Textbox(label="C贸digo de estado del servidor")
with gr.Accordion("Par谩metros", open=False):
top_p = gr.Slider(minimum=0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (muestreo de n煤cleo)")
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.2, step=0.1, interactive=True, label="Temperatura")
chat_counter = gr.Number(value=0, visible=False, precision=0)
with gr.Column(elem_id="user_consent_container") as user_consent_block:
accept_checkbox = gr.Checkbox(visible=False)
js = "(x) => confirm('Al hacer clic en \"Acepto\", acepto que mis datos pueden ser publicados o compartidos para investigaci贸n.')"
with gr.Accordion("Consentimiento de Usuario para Recolecci贸n, Uso y Compartici贸n de Datos", open=True):
gr.HTML("""
<div>
<p>Al usar nuestra aplicaci贸n, que funciona con la API de OpenAI, reconoces y aceptas los siguientes t茅rminos sobre los datos que proporcionas:</p>
<ol>
<li><strong>Recolecci贸n:</strong> Podemos recopilar informaci贸n, incluyendo las entradas que escribes en nuestra aplicaci贸n, las salidas generadas por la API de OpenAI, y ciertos detalles t茅cnicos sobre tu dispositivo y conexi贸n (como tipo de navegador, sistema operativo y ubicaci贸n geogr谩fica) proporcionados por los headers de solicitud de tu dispositivo. Estos datos pasaran por un proceso de anonimizaci贸n para evitar la recolecci贸n de informaci贸n privada.</li>
<li><strong>Uso:</strong> Podemos usar los datos recopilados para prop贸sitos de investigaci贸n y desarrollo de LatamGPT.</li>
<li><strong>Compartici贸n y Publicaci贸n:</strong> Los datos recolectados, incluyendo los detalles t茅cnicos recopilados de los headers de solicitud de tu dispositivo, pueden ser publicados, compartidos con terceros, o usados para an谩lisis y prop贸sitos de reportes.</li>
<li><strong>Retenci贸n de Datos:</strong> Podemos retener tus datos anonimizados, incluyendo los detalles t茅cnicos recopilados de los headers de solicitud de tu dispositivo, por el tiempo que sea necesario.</li>
</ol>
<p>Al continuar usando nuestra aplicaci贸n, proporcionas tu consentimiento expl铆cito para la recolecci贸n, uso y potencial compartici贸n de tus datos como se describe arriba. Si no est谩s de acuerdo con nuestras pr谩cticas de recolecci贸n, uso y compartici贸n de datos, por favor no uses nuestra aplicaci贸n.</p>
<p><strong>Este proyecto contribuye al desarrollo de LatamGPT, un modelo de lenguaje para Am茅rica Latina.</strong></p>
</div>
""")
accept_button = gr.Button("Acepto / I Agree")
def enable_inputs():
return gr.update(visible=False), gr.update(visible=True)
accept_button.click(None, None, accept_checkbox, js=js, queue=False)
accept_checkbox.change(fn=enable_inputs, inputs=[], outputs=[user_consent_block, main_block], queue=False)
inputs.submit(reset_textbox, [], [inputs, b1], queue=False)
inputs.submit(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1])
b1.click(reset_textbox, [], [inputs, b1], queue=False)
b1.click(predict, [inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code, inputs, b1])
if __name__ == "__main__":
demo.launch() |