Dominik Macháček
commited on
Commit
·
6fa0080
1
Parent(s):
d543411
VAC
Browse files- performance tests pending
- TODO: timestamps after refresh are decreasing
- voice_activity_controller.py +16 -33
- whisper_online_server.py +7 -3
- whisper_online_vac.py +20 -26
voice_activity_controller.py
CHANGED
|
@@ -1,18 +1,5 @@
|
|
| 1 |
import torch
|
| 2 |
import numpy as np
|
| 3 |
-
# import sounddevice as sd
|
| 4 |
-
import torch
|
| 5 |
-
import numpy as np
|
| 6 |
-
import datetime
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def int2float(sound):
|
| 10 |
-
abs_max = np.abs(sound).max()
|
| 11 |
-
sound = sound.astype('float32')
|
| 12 |
-
if abs_max > 0:
|
| 13 |
-
sound *= 1/32768
|
| 14 |
-
sound = sound.squeeze() # depends on the use case
|
| 15 |
-
return sound
|
| 16 |
|
| 17 |
class VoiceActivityController:
|
| 18 |
def __init__(
|
|
@@ -22,10 +9,10 @@ class VoiceActivityController:
|
|
| 22 |
min_speech_to_final_ms = 100,
|
| 23 |
min_silence_duration_ms = 100,
|
| 24 |
use_vad_result = True,
|
| 25 |
-
activity_detected_callback=None,
|
| 26 |
threshold =0.3
|
| 27 |
):
|
| 28 |
-
self.activity_detected_callback=activity_detected_callback
|
| 29 |
self.model, self.utils = torch.hub.load(
|
| 30 |
repo_or_dir='snakers4/silero-vad',
|
| 31 |
model='silero_vad'
|
|
@@ -42,7 +29,6 @@ class VoiceActivityController:
|
|
| 42 |
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
| 43 |
|
| 44 |
self.use_vad_result = use_vad_result
|
| 45 |
-
self.last_marked_chunk = None
|
| 46 |
self.threshold = threshold
|
| 47 |
self.reset_states()
|
| 48 |
|
|
@@ -55,7 +41,13 @@ class VoiceActivityController:
|
|
| 55 |
self.speech_len = 0
|
| 56 |
|
| 57 |
def apply_vad(self, audio):
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
x = audio
|
| 60 |
if not torch.is_tensor(x):
|
| 61 |
try:
|
|
@@ -64,16 +56,16 @@ class VoiceActivityController:
|
|
| 64 |
raise TypeError("Audio cannot be casted to tensor. Cast it manually")
|
| 65 |
|
| 66 |
speech_prob = self.model(x, self.sampling_rate).item()
|
|
|
|
| 67 |
|
| 68 |
window_size_samples = len(x[0]) if x.dim() == 2 else len(x)
|
| 69 |
self.current_sample += window_size_samples
|
| 70 |
|
| 71 |
-
|
| 72 |
-
if (speech_prob >= self.threshold):
|
| 73 |
self.temp_end = 0
|
| 74 |
return audio, window_size_samples, 0
|
| 75 |
|
| 76 |
-
else
|
| 77 |
if not self.temp_end:
|
| 78 |
self.temp_end = self.current_sample
|
| 79 |
|
|
@@ -84,14 +76,12 @@ class VoiceActivityController:
|
|
| 84 |
|
| 85 |
|
| 86 |
def detect_speech_iter(self, data, audio_in_int16 = False):
|
| 87 |
-
# audio_block = np.frombuffer(data, dtype=np.int16) if not audio_in_int16 else data
|
| 88 |
audio_block = data
|
| 89 |
wav = audio_block
|
| 90 |
|
| 91 |
-
print(wav, len(wav), type(wav), wav.dtype)
|
| 92 |
-
|
| 93 |
is_final = False
|
| 94 |
voice_audio, speech_in_wav, last_silent_in_wav = self.apply_vad(wav)
|
|
|
|
| 95 |
|
| 96 |
|
| 97 |
if speech_in_wav > 0 :
|
|
@@ -101,27 +91,20 @@ class VoiceActivityController:
|
|
| 101 |
# self.activity_detected_callback()
|
| 102 |
|
| 103 |
self.last_silence_len += last_silent_in_wav
|
|
|
|
|
|
|
| 104 |
if self.last_silence_len>= self.final_silence_limit and self.speech_len >= self.final_speech_limit:
|
|
|
|
| 105 |
|
| 106 |
is_final = True
|
| 107 |
self.last_silence_len= 0
|
| 108 |
self.speech_len = 0
|
| 109 |
|
| 110 |
-
# return voice_audio.tobytes(), is_final
|
| 111 |
return voice_audio, is_final
|
| 112 |
|
| 113 |
-
|
| 114 |
-
|
| 115 |
def detect_user_speech(self, audio_stream, audio_in_int16 = False):
|
| 116 |
self.last_silence_len= 0
|
| 117 |
self.speech_len = 0
|
| 118 |
|
| 119 |
for data in audio_stream: # replace with your condition of choice
|
| 120 |
yield self.detect_speech_iter(data, audio_in_int16)
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
|
|
|
| 1 |
import torch
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
class VoiceActivityController:
|
| 5 |
def __init__(
|
|
|
|
| 9 |
min_speech_to_final_ms = 100,
|
| 10 |
min_silence_duration_ms = 100,
|
| 11 |
use_vad_result = True,
|
| 12 |
+
# activity_detected_callback=None,
|
| 13 |
threshold =0.3
|
| 14 |
):
|
| 15 |
+
# self.activity_detected_callback=activity_detected_callback
|
| 16 |
self.model, self.utils = torch.hub.load(
|
| 17 |
repo_or_dir='snakers4/silero-vad',
|
| 18 |
model='silero_vad'
|
|
|
|
| 29 |
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
| 30 |
|
| 31 |
self.use_vad_result = use_vad_result
|
|
|
|
| 32 |
self.threshold = threshold
|
| 33 |
self.reset_states()
|
| 34 |
|
|
|
|
| 41 |
self.speech_len = 0
|
| 42 |
|
| 43 |
def apply_vad(self, audio):
|
| 44 |
+
"""
|
| 45 |
+
returns: triple
|
| 46 |
+
(voice_audio,
|
| 47 |
+
speech_in_wav,
|
| 48 |
+
silence_in_wav)
|
| 49 |
+
|
| 50 |
+
"""
|
| 51 |
x = audio
|
| 52 |
if not torch.is_tensor(x):
|
| 53 |
try:
|
|
|
|
| 56 |
raise TypeError("Audio cannot be casted to tensor. Cast it manually")
|
| 57 |
|
| 58 |
speech_prob = self.model(x, self.sampling_rate).item()
|
| 59 |
+
print("speech_prob",speech_prob)
|
| 60 |
|
| 61 |
window_size_samples = len(x[0]) if x.dim() == 2 else len(x)
|
| 62 |
self.current_sample += window_size_samples
|
| 63 |
|
| 64 |
+
if speech_prob >= self.threshold: # speech is detected
|
|
|
|
| 65 |
self.temp_end = 0
|
| 66 |
return audio, window_size_samples, 0
|
| 67 |
|
| 68 |
+
else: # silence detected, counting w
|
| 69 |
if not self.temp_end:
|
| 70 |
self.temp_end = self.current_sample
|
| 71 |
|
|
|
|
| 76 |
|
| 77 |
|
| 78 |
def detect_speech_iter(self, data, audio_in_int16 = False):
|
|
|
|
| 79 |
audio_block = data
|
| 80 |
wav = audio_block
|
| 81 |
|
|
|
|
|
|
|
| 82 |
is_final = False
|
| 83 |
voice_audio, speech_in_wav, last_silent_in_wav = self.apply_vad(wav)
|
| 84 |
+
print("speech, last silence",speech_in_wav, last_silent_in_wav)
|
| 85 |
|
| 86 |
|
| 87 |
if speech_in_wav > 0 :
|
|
|
|
| 91 |
# self.activity_detected_callback()
|
| 92 |
|
| 93 |
self.last_silence_len += last_silent_in_wav
|
| 94 |
+
print("self.last_silence_len",self.last_silence_len, self.final_silence_limit,self.last_silence_len>= self.final_silence_limit)
|
| 95 |
+
print("self.speech_len, final_speech_limit",self.speech_len , self.final_speech_limit,self.speech_len >= self.final_speech_limit)
|
| 96 |
if self.last_silence_len>= self.final_silence_limit and self.speech_len >= self.final_speech_limit:
|
| 97 |
+
for i in range(10): print("TADY!!!")
|
| 98 |
|
| 99 |
is_final = True
|
| 100 |
self.last_silence_len= 0
|
| 101 |
self.speech_len = 0
|
| 102 |
|
|
|
|
| 103 |
return voice_audio, is_final
|
| 104 |
|
|
|
|
|
|
|
| 105 |
def detect_user_speech(self, audio_stream, audio_in_int16 = False):
|
| 106 |
self.last_silence_len= 0
|
| 107 |
self.speech_len = 0
|
| 108 |
|
| 109 |
for data in audio_stream: # replace with your condition of choice
|
| 110 |
yield self.detect_speech_iter(data, audio_in_int16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
whisper_online_server.py
CHANGED
|
@@ -9,7 +9,8 @@ parser = argparse.ArgumentParser()
|
|
| 9 |
# server options
|
| 10 |
parser.add_argument("--host", type=str, default='localhost')
|
| 11 |
parser.add_argument("--port", type=int, default=43007)
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
# options from whisper_online
|
| 15 |
add_shared_args(parser)
|
|
@@ -57,8 +58,11 @@ if args.buffer_trimming == "sentence":
|
|
| 57 |
tokenizer = create_tokenizer(tgt_language)
|
| 58 |
else:
|
| 59 |
tokenizer = None
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
|
| 64 |
demo_audio_path = "cs-maji-2.16k.wav"
|
|
|
|
| 9 |
# server options
|
| 10 |
parser.add_argument("--host", type=str, default='localhost')
|
| 11 |
parser.add_argument("--port", type=int, default=43007)
|
| 12 |
+
parser.add_argument('--vac', action="store_true", default=False, help='Use VAC = voice activity controller.')
|
| 13 |
+
parser.add_argument('--vac-chunk-size', type=float, default=0.04, help='VAC sample size in seconds.')
|
| 14 |
|
| 15 |
# options from whisper_online
|
| 16 |
add_shared_args(parser)
|
|
|
|
| 58 |
tokenizer = create_tokenizer(tgt_language)
|
| 59 |
else:
|
| 60 |
tokenizer = None
|
| 61 |
+
if not args.vac:
|
| 62 |
+
online = OnlineASRProcessor(asr,tokenizer,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))
|
| 63 |
+
else:
|
| 64 |
+
from whisper_online_vac import *
|
| 65 |
+
online = VACOnlineASRProcessor(min_chunk, asr,tokenizer,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))
|
| 66 |
|
| 67 |
|
| 68 |
demo_audio_path = "cs-maji-2.16k.wav"
|
whisper_online_vac.py
CHANGED
|
@@ -7,52 +7,46 @@ SAMPLING_RATE = 16000
|
|
| 7 |
|
| 8 |
class VACOnlineASRProcessor(OnlineASRProcessor):
|
| 9 |
|
| 10 |
-
def __init__(self, *a, **kw):
|
|
|
|
|
|
|
| 11 |
self.online = OnlineASRProcessor(*a, **kw)
|
| 12 |
-
self.vac = VoiceActivityController(use_vad_result =
|
| 13 |
|
| 14 |
-
self.is_currently_final = False
|
| 15 |
self.logfile = self.online.logfile
|
| 16 |
|
| 17 |
-
|
| 18 |
-
#self.vac_stream = self.vac.detect_user_speech(self.vac_buffer, audio_in_int16=False)
|
| 19 |
-
|
| 20 |
-
self.audio_log = open("audio_log.wav","wb")
|
| 21 |
|
| 22 |
def init(self):
|
| 23 |
self.online.init()
|
| 24 |
self.vac.reset_states()
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
def insert_audio_chunk(self, audio):
|
| 27 |
-
print(audio, len(audio), type(audio), audio.dtype)
|
| 28 |
r = self.vac.detect_speech_iter(audio,audio_in_int16=False)
|
| 29 |
-
|
| 30 |
-
print(
|
| 31 |
-
print("raw_bytes", raw_bytes[:10], len(raw_bytes), type(raw_bytes))
|
| 32 |
-
# self.audio_log.write(raw_bytes)
|
| 33 |
-
#sf = soundfile.SoundFile(io.BytesIO(raw_bytes), channels=1,endian="LITTLE",samplerate=SAMPLING_RATE, subtype="PCM_16",format="RAW")
|
| 34 |
-
#audio, _ = librosa.load(sf,sr=SAMPLING_RATE)
|
| 35 |
-
audio = raw_bytes
|
| 36 |
-
print("po překonvertování", audio, len(audio), type(audio), audio.dtype)
|
| 37 |
self.is_currently_final = is_final
|
| 38 |
self.online.insert_audio_chunk(audio)
|
| 39 |
-
|
| 40 |
-
self.audio_log.flush()
|
| 41 |
-
|
| 42 |
-
print("inserted",file=self.logfile)
|
| 43 |
|
| 44 |
def process_iter(self):
|
| 45 |
if self.is_currently_final:
|
| 46 |
return self.finish()
|
| 47 |
-
|
| 48 |
-
|
| 49 |
ret = self.online.process_iter()
|
| 50 |
-
print("tady",file=self.logfile)
|
| 51 |
return ret
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
def finish(self):
|
| 54 |
ret = self.online.finish()
|
| 55 |
self.online.init()
|
|
|
|
| 56 |
return ret
|
| 57 |
|
| 58 |
|
|
@@ -67,7 +61,7 @@ if __name__ == "__main__":
|
|
| 67 |
parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
|
| 68 |
parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.')
|
| 69 |
parser.add_argument('--comp_unaware', action="store_true", default=False, help='Computationally unaware simulation.')
|
| 70 |
-
|
| 71 |
args = parser.parse_args()
|
| 72 |
|
| 73 |
# reset to store stderr to different file stream, e.g. open(os.devnull,"w")
|
|
@@ -111,12 +105,12 @@ if __name__ == "__main__":
|
|
| 111 |
asr.use_vad()
|
| 112 |
|
| 113 |
|
| 114 |
-
min_chunk = args.
|
| 115 |
if args.buffer_trimming == "sentence":
|
| 116 |
tokenizer = create_tokenizer(tgt_language)
|
| 117 |
else:
|
| 118 |
tokenizer = None
|
| 119 |
-
online = VACOnlineASRProcessor(asr,tokenizer,logfile=logfile,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))
|
| 120 |
|
| 121 |
|
| 122 |
# load the audio into the LRU cache before we start the timer
|
|
|
|
| 7 |
|
| 8 |
class VACOnlineASRProcessor(OnlineASRProcessor):
|
| 9 |
|
| 10 |
+
def __init__(self, online_chunk_size, *a, **kw):
|
| 11 |
+
self.online_chunk_size = online_chunk_size
|
| 12 |
+
|
| 13 |
self.online = OnlineASRProcessor(*a, **kw)
|
| 14 |
+
self.vac = VoiceActivityController(use_vad_result = False)
|
| 15 |
|
|
|
|
| 16 |
self.logfile = self.online.logfile
|
| 17 |
|
| 18 |
+
self.init()
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
def init(self):
|
| 21 |
self.online.init()
|
| 22 |
self.vac.reset_states()
|
| 23 |
+
self.current_online_chunk_buffer_size = 0
|
| 24 |
+
self.is_currently_final = False
|
| 25 |
+
|
| 26 |
|
| 27 |
def insert_audio_chunk(self, audio):
|
|
|
|
| 28 |
r = self.vac.detect_speech_iter(audio,audio_in_int16=False)
|
| 29 |
+
audio, is_final = r
|
| 30 |
+
print(is_final)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
self.is_currently_final = is_final
|
| 32 |
self.online.insert_audio_chunk(audio)
|
| 33 |
+
self.current_online_chunk_buffer_size += len(audio)
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
def process_iter(self):
|
| 36 |
if self.is_currently_final:
|
| 37 |
return self.finish()
|
| 38 |
+
elif self.current_online_chunk_buffer_size > SAMPLING_RATE*self.online_chunk_size:
|
| 39 |
+
self.current_online_chunk_buffer_size = 0
|
| 40 |
ret = self.online.process_iter()
|
|
|
|
| 41 |
return ret
|
| 42 |
+
else:
|
| 43 |
+
print("no online update, only VAD", file=self.logfile)
|
| 44 |
+
return (None, None, "")
|
| 45 |
|
| 46 |
def finish(self):
|
| 47 |
ret = self.online.finish()
|
| 48 |
self.online.init()
|
| 49 |
+
self.current_online_chunk_buffer_size = 0
|
| 50 |
return ret
|
| 51 |
|
| 52 |
|
|
|
|
| 61 |
parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
|
| 62 |
parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.')
|
| 63 |
parser.add_argument('--comp_unaware', action="store_true", default=False, help='Computationally unaware simulation.')
|
| 64 |
+
parser.add_argument('--vac-chunk-size', type=float, default=0.04, help='VAC sample size in seconds.')
|
| 65 |
args = parser.parse_args()
|
| 66 |
|
| 67 |
# reset to store stderr to different file stream, e.g. open(os.devnull,"w")
|
|
|
|
| 105 |
asr.use_vad()
|
| 106 |
|
| 107 |
|
| 108 |
+
min_chunk = args.vac_chunk_size
|
| 109 |
if args.buffer_trimming == "sentence":
|
| 110 |
tokenizer = create_tokenizer(tgt_language)
|
| 111 |
else:
|
| 112 |
tokenizer = None
|
| 113 |
+
online = VACOnlineASRProcessor(args.min_chunk_size, asr,tokenizer,logfile=logfile,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))
|
| 114 |
|
| 115 |
|
| 116 |
# load the audio into the LRU cache before we start the timer
|