silero vad
Browse files- silero_vad_iterator.py +163 -0
silero_vad_iterator.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
# This is copied from silero-vad's vad_utils.py:
|
| 4 |
+
# https://github.com/snakers4/silero-vad/blob/f6b1294cb27590fb2452899df98fb234dfef1134/utils_vad.py#L340
|
| 5 |
+
# (except changed defaults)
|
| 6 |
+
|
| 7 |
+
# Their licence is MIT, same as ours: https://github.com/snakers4/silero-vad/blob/f6b1294cb27590fb2452899df98fb234dfef1134/LICENSE
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class VADIterator:
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
model,
|
| 14 |
+
threshold: float = 0.5,
|
| 15 |
+
sampling_rate: int = 16000,
|
| 16 |
+
min_silence_duration_ms: int = 500, # makes sense on one recording that I checked
|
| 17 |
+
speech_pad_ms: int = 100, # same
|
| 18 |
+
):
|
| 19 |
+
"""
|
| 20 |
+
Class for stream imitation
|
| 21 |
+
|
| 22 |
+
Parameters
|
| 23 |
+
----------
|
| 24 |
+
model: preloaded .jit silero VAD model
|
| 25 |
+
|
| 26 |
+
threshold: float (default - 0.5)
|
| 27 |
+
Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH.
|
| 28 |
+
It is better to tune this parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
| 29 |
+
|
| 30 |
+
sampling_rate: int (default - 16000)
|
| 31 |
+
Currently silero VAD models support 8000 and 16000 sample rates
|
| 32 |
+
|
| 33 |
+
min_silence_duration_ms: int (default - 100 milliseconds)
|
| 34 |
+
In the end of each speech chunk wait for min_silence_duration_ms before separating it
|
| 35 |
+
|
| 36 |
+
speech_pad_ms: int (default - 30 milliseconds)
|
| 37 |
+
Final speech chunks are padded by speech_pad_ms each side
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
self.model = model
|
| 41 |
+
self.threshold = threshold
|
| 42 |
+
self.sampling_rate = sampling_rate
|
| 43 |
+
|
| 44 |
+
if sampling_rate not in [8000, 16000]:
|
| 45 |
+
raise ValueError(
|
| 46 |
+
"VADIterator does not support sampling rates other than [8000, 16000]"
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
| 50 |
+
self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
| 51 |
+
self.reset_states()
|
| 52 |
+
|
| 53 |
+
def reset_states(self):
|
| 54 |
+
|
| 55 |
+
self.model.reset_states()
|
| 56 |
+
self.triggered = False
|
| 57 |
+
self.temp_end = 0
|
| 58 |
+
self.current_sample = 0
|
| 59 |
+
|
| 60 |
+
def __call__(self, x, return_seconds=False):
|
| 61 |
+
"""
|
| 62 |
+
x: torch.Tensor
|
| 63 |
+
audio chunk (see examples in repo)
|
| 64 |
+
|
| 65 |
+
return_seconds: bool (default - False)
|
| 66 |
+
whether return timestamps in seconds (default - samples)
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
if not torch.is_tensor(x):
|
| 70 |
+
try:
|
| 71 |
+
x = torch.Tensor(x)
|
| 72 |
+
except:
|
| 73 |
+
raise TypeError("Audio cannot be casted to tensor. Cast it manually")
|
| 74 |
+
|
| 75 |
+
window_size_samples = len(x[0]) if x.dim() == 2 else len(x)
|
| 76 |
+
self.current_sample += window_size_samples
|
| 77 |
+
|
| 78 |
+
speech_prob = self.model(x, self.sampling_rate).item()
|
| 79 |
+
|
| 80 |
+
if (speech_prob >= self.threshold) and self.temp_end:
|
| 81 |
+
self.temp_end = 0
|
| 82 |
+
|
| 83 |
+
if (speech_prob >= self.threshold) and not self.triggered:
|
| 84 |
+
self.triggered = True
|
| 85 |
+
speech_start = self.current_sample - self.speech_pad_samples
|
| 86 |
+
return {
|
| 87 |
+
"start": (
|
| 88 |
+
int(speech_start)
|
| 89 |
+
if not return_seconds
|
| 90 |
+
else round(speech_start / self.sampling_rate, 1)
|
| 91 |
+
)
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
if (speech_prob < self.threshold - 0.15) and self.triggered:
|
| 95 |
+
if not self.temp_end:
|
| 96 |
+
self.temp_end = self.current_sample
|
| 97 |
+
if self.current_sample - self.temp_end < self.min_silence_samples:
|
| 98 |
+
return None
|
| 99 |
+
else:
|
| 100 |
+
speech_end = self.temp_end + self.speech_pad_samples
|
| 101 |
+
self.temp_end = 0
|
| 102 |
+
self.triggered = False
|
| 103 |
+
return {
|
| 104 |
+
"end": (
|
| 105 |
+
int(speech_end)
|
| 106 |
+
if not return_seconds
|
| 107 |
+
else round(speech_end / self.sampling_rate, 1)
|
| 108 |
+
)
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
return None
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
#######################
|
| 115 |
+
# because Silero now requires exactly 512-sized audio chunks
|
| 116 |
+
|
| 117 |
+
import numpy as np
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
class FixedVADIterator(VADIterator):
|
| 121 |
+
"""It fixes VADIterator by allowing to process any audio length, not only exactly 512 frames at once.
|
| 122 |
+
If audio to be processed at once is long and multiple voiced segments detected,
|
| 123 |
+
then __call__ returns the start of the first segment, and end (or middle, which means no end) of the last segment.
|
| 124 |
+
"""
|
| 125 |
+
|
| 126 |
+
def reset_states(self):
|
| 127 |
+
super().reset_states()
|
| 128 |
+
self.buffer = np.array([], dtype=np.float32)
|
| 129 |
+
|
| 130 |
+
def __call__(self, x, return_seconds=False):
|
| 131 |
+
self.buffer = np.append(self.buffer, x)
|
| 132 |
+
ret = None
|
| 133 |
+
while len(self.buffer) >= 512:
|
| 134 |
+
r = super().__call__(self.buffer[:512], return_seconds=return_seconds)
|
| 135 |
+
self.buffer = self.buffer[512:]
|
| 136 |
+
if ret is None:
|
| 137 |
+
ret = r
|
| 138 |
+
elif r is not None:
|
| 139 |
+
if "end" in r:
|
| 140 |
+
ret["end"] = r["end"] # the latter end
|
| 141 |
+
if "start" in r and "end" in ret: # there is an earlier start.
|
| 142 |
+
# Remove end, merging this segment with the previous one.
|
| 143 |
+
del ret["end"]
|
| 144 |
+
return ret if ret != {} else None
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
# test/demonstrate the need for FixedVADIterator:
|
| 149 |
+
|
| 150 |
+
import torch
|
| 151 |
+
|
| 152 |
+
model, _ = torch.hub.load(repo_or_dir="snakers4/silero-vad", model="silero_vad")
|
| 153 |
+
vac = FixedVADIterator(model)
|
| 154 |
+
# vac = VADIterator(model) # the second case crashes with this
|
| 155 |
+
|
| 156 |
+
# this works: for both
|
| 157 |
+
audio_buffer = np.array([0] * (512), dtype=np.float32)
|
| 158 |
+
vac(audio_buffer)
|
| 159 |
+
|
| 160 |
+
# this crashes on the non FixedVADIterator with
|
| 161 |
+
# ops.prim.RaiseException("Input audio chunk is too short", "builtins.ValueError")
|
| 162 |
+
audio_buffer = np.array([0] * (512 - 1), dtype=np.float32)
|
| 163 |
+
vac(audio_buffer)
|