File size: 6,879 Bytes
d543411
 
 
 
 
 
 
 
 
6fa0080
 
 
d543411
6fa0080
d543411
 
 
6fa0080
d543411
 
 
 
6fa0080
 
 
d543411
 
 
6fa0080
 
d543411
 
6fa0080
d543411
 
 
 
6fa0080
 
d543411
 
6fa0080
 
 
d543411
 
 
c812334
6fa0080
d543411
 
 
 
 
 
 
 
 
 
 
 
 
 
6fa0080
d543411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fa0080
d543411
 
 
 
6fa0080
d543411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from whisper_online import *
from voice_activity_controller import *
import soundfile
import io

SAMPLING_RATE = 16000

class VACOnlineASRProcessor(OnlineASRProcessor):

    def __init__(self, online_chunk_size, *a, **kw):
        self.online_chunk_size = online_chunk_size

        self.online = OnlineASRProcessor(*a, **kw)
        self.vac = VoiceActivityController(use_vad_result = False)

        self.logfile = self.online.logfile

        self.init()

    def init(self):
        self.online.init()
        self.vac.reset_states()
        self.current_online_chunk_buffer_size = 0
        self.is_currently_final = False


    def insert_audio_chunk(self, audio):
        r = self.vac.detect_speech_iter(audio,audio_in_int16=False)
        audio, is_final = r
        print(is_final)
        self.is_currently_final = is_final
        self.online.insert_audio_chunk(audio)
        self.current_online_chunk_buffer_size += len(audio)

    def process_iter(self):
        if self.is_currently_final:
            return self.finish()
        elif self.current_online_chunk_buffer_size > SAMPLING_RATE*self.online_chunk_size:
            self.current_online_chunk_buffer_size = 0
            ret = self.online.process_iter()
            return ret
        else:
            print("no online update, only VAD", file=self.logfile)
            return (None, None, "")

    def finish(self):
        ret = self.online.finish()
        self.online.init(keep_offset=True)
        self.current_online_chunk_buffer_size = 0
        return ret




if __name__ == "__main__":

    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('audio_path', type=str, help="Filename of 16kHz mono channel wav, on which live streaming is simulated.")
    add_shared_args(parser)
    parser.add_argument('--start_at', type=float, default=0.0, help='Start processing audio at this time.')
    parser.add_argument('--offline', action="store_true", default=False, help='Offline mode.')
    parser.add_argument('--comp_unaware', action="store_true", default=False, help='Computationally unaware simulation.')
    parser.add_argument('--vac-chunk-size', type=float, default=0.04, help='VAC sample size in seconds.') 
    args = parser.parse_args()

    # reset to store stderr to different file stream, e.g. open(os.devnull,"w")
    logfile = sys.stderr

    if args.offline and args.comp_unaware:
        print("No or one option from --offline and --comp_unaware are available, not both. Exiting.",file=logfile)
        sys.exit(1)

    audio_path = args.audio_path

    SAMPLING_RATE = 16000
    duration = len(load_audio(audio_path))/SAMPLING_RATE
    print("Audio duration is: %2.2f seconds" % duration, file=logfile)

    size = args.model
    language = args.lan

    t = time.time()
    print(f"Loading Whisper {size} model for {language}...",file=logfile,end=" ",flush=True)

    if args.backend == "faster-whisper":
        asr_cls = FasterWhisperASR
    else:
        asr_cls = WhisperTimestampedASR

    asr = asr_cls(modelsize=size, lan=language, cache_dir=args.model_cache_dir, model_dir=args.model_dir)

    if args.task == "translate":
        asr.set_translate_task()
        tgt_language = "en"  # Whisper translates into English
    else:
        tgt_language = language  # Whisper transcribes in this language


    e = time.time()
    print(f"done. It took {round(e-t,2)} seconds.",file=logfile)

    if args.vad:
        print("setting VAD filter",file=logfile)
        asr.use_vad()

    
    min_chunk = args.vac_chunk_size
    if args.buffer_trimming == "sentence":
        tokenizer = create_tokenizer(tgt_language)
    else:
        tokenizer = None
    online = VACOnlineASRProcessor(args.min_chunk_size, asr,tokenizer,logfile=logfile,buffer_trimming=(args.buffer_trimming, args.buffer_trimming_sec))


    # load the audio into the LRU cache before we start the timer
    a = load_audio_chunk(audio_path,0,1)

    # warm up the ASR, because the very first transcribe takes much more time than the other
    asr.transcribe(a)

    beg = args.start_at
    start = time.time()-beg

    def output_transcript(o, now=None):
        # output format in stdout is like:
        # 4186.3606 0 1720 Takhle to je
        # - the first three words are:
        #    - emission time from beginning of processing, in milliseconds
        #    - beg and end timestamp of the text segment, as estimated by Whisper model. The timestamps are not accurate, but they're useful anyway
        # - the next words: segment transcript
        if now is None:
            now = time.time()-start
        if o[0] is not None:
            print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),file=logfile,flush=True)
            print("%1.4f %1.0f %1.0f %s" % (now*1000, o[0]*1000,o[1]*1000,o[2]),flush=True)
        else:
            print(o,file=logfile,flush=True)

    if args.offline: ## offline mode processing (for testing/debugging)
        a = load_audio(audio_path)
        online.insert_audio_chunk(a)
        try:
            o = online.process_iter()
        except AssertionError:
            print("assertion error",file=logfile)
            pass
        else:
            output_transcript(o)
        now = None
    elif args.comp_unaware:  # computational unaware mode 
        end = beg + min_chunk
        while True:
            a = load_audio_chunk(audio_path,beg,end)
            online.insert_audio_chunk(a)
            try:
                o = online.process_iter()
            except AssertionError:
                print("assertion error",file=logfile)
                pass
            else:
                output_transcript(o, now=end)

            print(f"## last processed {end:.2f}s",file=logfile,flush=True)

            if end >= duration:
                break
            
            beg = end
            
            if end + min_chunk > duration:
                end = duration
            else:
                end += min_chunk
        now = duration

    else: # online = simultaneous mode
        end = 0
        while True:
            now = time.time() - start
            if now < end+min_chunk:
                time.sleep(min_chunk+end-now)
            end = time.time() - start
            a = load_audio_chunk(audio_path,beg,end)
            beg = end
            online.insert_audio_chunk(a)

            try:
                o = online.process_iter()
            except AssertionError:
                print("assertion error",file=logfile)
                pass
            else:
                output_transcript(o)
            now = time.time() - start
            print(f"## last processed {end:.2f} s, now is {now:.2f}, the latency is {now-end:.2f}",file=logfile,flush=True)

            if end >= duration:
                break
        now = None

    o = online.finish()
    output_transcript(o, now=now)