github_search_visualizations / text_visualization.py
lambdaofgod's picture
scatterplots
9f7559c
from typing import Dict, Any, Iterable
from sklearn.feature_extraction.text import TfidfVectorizer
import wordcloud
from pydantic import BaseModel, Field
import numpy as np
import PIL
import plotly.express as px
import pandas as pd
import plotly.graph_objects as go
class WordCloudExtractor(BaseModel):
max_words: int = 50
wordcloud_params: Dict[str, Any] = Field(default_factory=dict)
tfidf_params: Dict[str, Any] = Field(default_factory=lambda: {"stop_words": "english"})
def extract_wordcloud_image(self, texts) -> PIL.Image.Image:
frequencies = self._extract_frequencies(texts, self.max_words, tfidf_params=self.tfidf_params)
wc = wordcloud.WordCloud(**self.wordcloud_params).generate_from_frequencies(frequencies)
return wc.to_image()
@classmethod
def _extract_frequencies(cls, texts, max_words=100, tfidf_params: dict={}) -> Dict[str, float]:
"""
Extract word frequencies from a corpus using TF-IDF vectorization
and generate word cloud frequencies.
Args:
texts: List of text documents
max_features: Maximum number of words to include
Returns:
Dictionary of word frequencies suitable for WordCloud
"""
# Initialize TF-IDF vectorizer
tfidf = TfidfVectorizer(
max_features=max_words,
**tfidf_params
)
# Fit and transform the texts
tfidf_matrix = tfidf.fit_transform(texts)
# Get feature names (words)
feature_names = tfidf.get_feature_names_out()
# Calculate mean TF-IDF scores across documents
mean_tfidf = np.array(tfidf_matrix.mean(axis=0)).flatten()
# Create frequency dictionary
frequencies = dict(zip(feature_names, mean_tfidf))
return frequencies
class EmbeddingVisualizer(BaseModel):
display_df: pd.DataFrame
plot_kwargs: Dict[str, Any] = Field(default_factory=lambda: dict(
range_x=(3, 16.5),
range_y=(-3, 11),
width=1200,
height=800,
x="x",
y="y",
template="plotly_white",
))
def make_embedding_plots(self, color_col=None, hover_data=["name"], filter_df_fn=None):
"""
plots Plotly scatterplot of UMAP embeddings
"""
display_df = self.display_df
if filter_df_fn is not None:
display_df = filter_df_fn(display_df)
display_df = display_df.sort_values("representation", ascending=False)
readme_df = display_df[display_df["representation"].isin(["readme", "generated_readme", "task"])]
raw_df = display_df[display_df["representation"].isin(["dependency_signature", "selected_code", "task"])]
dependency_df = display_df[display_df["representation"].isin(["repository_signature", "dependency_signature", "generated_tasks", "task"])]
plots = [
self._make_task_and_repos_scatterplot(df, hover_data, color_col)
for df in [readme_df, raw_df, dependency_df]
]
return dict(zip(["READMEs", "Basic representations", "Dependency graph based representations"], plots))
def _make_task_and_repos_scatterplot(self, df, hover_data, color_col):
# Set opacity and symbol based on is_task
df['size'] = df['is_task'].apply(lambda x: 0.25 if x else 0.1)
df['symbol'] = df['is_task'].apply(int)
combined_fig = px.scatter(
df,
hover_name="name",
hover_data=hover_data,
color=color_col,
color_discrete_sequence=px.colors.qualitative.Set1,
opacity=0.5,
**self.plot_kwargs
)
combined_fig.data = combined_fig.data[::-1]
return combined_fig
def make_task_area_scatterplot(self, n_areas=6):
display_df = self.display_df
displayed_tasks_df = display_df[display_df["representation"] == "task"].sort_values("representation")
displayed_tasks_df = displayed_tasks_df.merge(pd.read_csv("data/paperswithcode_tasks.csv"), left_on="name", right_on="task")
displayed_tasks_df= displayed_tasks_df[displayed_tasks_df["area"].isin(displayed_tasks_df["area"].value_counts().head(n_areas).index)]
tasks_fig = px.scatter(displayed_tasks_df, color="area", hover_data=["name"], opacity=0.7, **self.plot_kwargs)
print("N DISPLAYED TASKS", len(displayed_tasks_df))
return tasks_fig
class Config:
arbitrary_types_allowed = True