### Generate import config from langchain_openai import ChatOpenAI from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate # Prompt agent_prompt = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.\nQuestion: {question} \nContext: {context} \nAnswer:""" prompt = ChatPromptTemplate.from_messages([("human", agent_prompt)]) prompt # Generator LLM llm = ChatOpenAI(model_name=config.GENERATOR_MODEL, temperature=0, streaming=True) # Post-processing def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) # Chain rag_chain = prompt | llm | StrOutputParser() # generation = rag_chain.invoke({"context": docs, "question": question}) # print(generation)