Spaces:
Runtime error
Runtime error
lachie0232
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,18 @@
|
|
1 |
-
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
system_message,
|
19 |
-
max_tokens,
|
20 |
-
temperature,
|
21 |
-
top_p,
|
22 |
-
):
|
23 |
-
messages = [{"role": "system", "content": system_message}]
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
messages.append({"role": "user", "content": message})
|
32 |
-
|
33 |
-
response = ""
|
34 |
-
|
35 |
-
for message in client.chat_completion(
|
36 |
-
messages,
|
37 |
-
max_tokens=max_tokens,
|
38 |
-
stream=True,
|
39 |
-
temperature=temperature,
|
40 |
-
top_p=top_p,
|
41 |
-
):
|
42 |
-
token = message.choices[0].delta.content
|
43 |
-
|
44 |
-
response += token
|
45 |
-
yield response
|
46 |
-
|
47 |
-
|
48 |
-
"""
|
49 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
50 |
-
"""
|
51 |
-
demo = gr.ChatInterface(
|
52 |
-
respond,
|
53 |
-
additional_inputs=[
|
54 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
55 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
56 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
57 |
-
gr.Slider(
|
58 |
-
minimum=0.1,
|
59 |
-
maximum=1.0,
|
60 |
-
value=0.95,
|
61 |
-
step=0.05,
|
62 |
-
label="Top-p (nucleus sampling)",
|
63 |
-
),
|
64 |
-
],
|
65 |
-
)
|
66 |
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
if __name__ == "__main__":
|
69 |
-
demo.launch()
|
70 |
|
|
|
1 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
# Load your custom-trained model
|
4 |
+
model_name = "lachie0234/jammy-finetuned" # Replace with your model's name on Hugging Face
|
5 |
+
qa_pipeline = pipeline("question-answering", model=model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Define the function to handle user input
|
8 |
+
def answer_question(question):
|
9 |
+
context = "Legendary asnwer man."
|
10 |
+
result = qa_pipeline(question=question, context=context)
|
11 |
+
return result['answer']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Set up the Gradio interface
|
14 |
+
import gradio as gr
|
15 |
+
interface = gr.Interface(fn=answer_question, inputs="text", outputs="text")
|
16 |
+
interface.launch()
|
17 |
|
|
|
|
|
18 |
|