Spaces:
Runtime error
Runtime error
| import math | |
| import torch | |
| import torch as th | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat | |
| from torch import nn, einsum | |
| try: | |
| import xformers | |
| import xformers.ops | |
| XFORMERS_IS_AVAILBLE = True | |
| except: | |
| XFORMERS_IS_AVAILBLE = False | |
| from core.common import gradient_checkpoint, exists, default | |
| from core.basics import conv_nd, zero_module, normalization | |
| class GEGLU(nn.Module): | |
| def __init__(self, dim_in, dim_out): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out * 2) | |
| def forward(self, x): | |
| x, gate = self.proj(x).chunk(2, dim=-1) | |
| return x * F.gelu(gate) | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): | |
| super().__init__() | |
| inner_dim = int(dim * mult) | |
| dim_out = default(dim_out, dim) | |
| project_in = ( | |
| nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) | |
| if not glu | |
| else GEGLU(dim, inner_dim) | |
| ) | |
| self.net = nn.Sequential( | |
| project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) | |
| ) | |
| def forward(self, x): | |
| return self.net(x) | |
| def Normalize(in_channels): | |
| return torch.nn.GroupNorm( | |
| num_groups=32, num_channels=in_channels, eps=1e-6, affine=True | |
| ) | |
| class RelativePosition(nn.Module): | |
| def __init__(self, num_units, max_relative_position): | |
| super().__init__() | |
| self.num_units = num_units | |
| self.max_relative_position = max_relative_position | |
| self.embeddings_table = nn.Parameter( | |
| th.Tensor(max_relative_position * 2 + 1, num_units) | |
| ) | |
| nn.init.xavier_uniform_(self.embeddings_table) | |
| def forward(self, length_q, length_k): | |
| device = self.embeddings_table.device | |
| range_vec_q = th.arange(length_q, device=device) | |
| range_vec_k = th.arange(length_k, device=device) | |
| distance_mat = range_vec_k[None, :] - range_vec_q[:, None] | |
| distance_mat_clipped = th.clamp( | |
| distance_mat, -self.max_relative_position, self.max_relative_position | |
| ) | |
| final_mat = distance_mat_clipped + self.max_relative_position | |
| final_mat = final_mat.long() | |
| embeddings = self.embeddings_table[final_mat] | |
| return embeddings | |
| class TemporalCrossAttention(nn.Module): | |
| def __init__( | |
| self, | |
| query_dim, | |
| context_dim=None, | |
| heads=8, | |
| dim_head=64, | |
| dropout=0.0, | |
| # For relative positional representation and image-video joint training. | |
| temporal_length=None, | |
| image_length=None, # For image-video joint training. | |
| # whether use relative positional representation in temporal attention. | |
| use_relative_position=False, | |
| # For image-video joint training. | |
| img_video_joint_train=False, | |
| use_tempoal_causal_attn=False, | |
| bidirectional_causal_attn=False, | |
| tempoal_attn_type=None, | |
| joint_train_mode="same_batch", | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| context_dim = default(context_dim, query_dim) | |
| self.context_dim = context_dim | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| self.temporal_length = temporal_length | |
| self.use_relative_position = use_relative_position | |
| self.img_video_joint_train = img_video_joint_train | |
| self.bidirectional_causal_attn = bidirectional_causal_attn | |
| self.joint_train_mode = joint_train_mode | |
| assert joint_train_mode in ["same_batch", "diff_batch"] | |
| self.tempoal_attn_type = tempoal_attn_type | |
| if bidirectional_causal_attn: | |
| assert use_tempoal_causal_attn | |
| if tempoal_attn_type: | |
| assert tempoal_attn_type in ["sparse_causal", "sparse_causal_first"] | |
| assert not use_tempoal_causal_attn | |
| assert not ( | |
| img_video_joint_train and (self.joint_train_mode == "same_batch") | |
| ) | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
| self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
| assert not ( | |
| img_video_joint_train | |
| and (self.joint_train_mode == "same_batch") | |
| and use_tempoal_causal_attn | |
| ) | |
| if img_video_joint_train: | |
| if self.joint_train_mode == "same_batch": | |
| mask = torch.ones( | |
| [1, temporal_length + image_length, temporal_length + image_length] | |
| ) | |
| mask[:, temporal_length:, :] = 0 | |
| mask[:, :, temporal_length:] = 0 | |
| self.mask = mask | |
| else: | |
| self.mask = None | |
| elif use_tempoal_causal_attn: | |
| # normal causal attn | |
| self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length])) | |
| elif tempoal_attn_type == "sparse_causal": | |
| # true indicates keeping | |
| mask1 = torch.tril(torch.ones([1, temporal_length, temporal_length])).bool() | |
| # initialize to same shape with mask1 | |
| mask2 = torch.zeros([1, temporal_length, temporal_length]) | |
| mask2[:, 2:temporal_length, : temporal_length - 2] = torch.tril( | |
| torch.ones([1, temporal_length - 2, temporal_length - 2]) | |
| ) | |
| mask2 = (1 - mask2).bool() # false indicates masking | |
| self.mask = mask1 & mask2 | |
| elif tempoal_attn_type == "sparse_causal_first": | |
| # true indicates keeping | |
| mask1 = torch.tril(torch.ones([1, temporal_length, temporal_length])).bool() | |
| mask2 = torch.zeros([1, temporal_length, temporal_length]) | |
| mask2[:, 2:temporal_length, 1 : temporal_length - 1] = torch.tril( | |
| torch.ones([1, temporal_length - 2, temporal_length - 2]) | |
| ) | |
| mask2 = (1 - mask2).bool() # false indicates masking | |
| self.mask = mask1 & mask2 | |
| else: | |
| self.mask = None | |
| if use_relative_position: | |
| assert temporal_length is not None | |
| self.relative_position_k = RelativePosition( | |
| num_units=dim_head, max_relative_position=temporal_length | |
| ) | |
| self.relative_position_v = RelativePosition( | |
| num_units=dim_head, max_relative_position=temporal_length | |
| ) | |
| self.to_out = nn.Sequential( | |
| nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) | |
| ) | |
| nn.init.constant_(self.to_q.weight, 0) | |
| nn.init.constant_(self.to_k.weight, 0) | |
| nn.init.constant_(self.to_v.weight, 0) | |
| nn.init.constant_(self.to_out[0].weight, 0) | |
| nn.init.constant_(self.to_out[0].bias, 0) | |
| def forward(self, x, context=None, mask=None): | |
| nh = self.heads | |
| out = x | |
| q = self.to_q(out) | |
| context = default(context, x) | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=nh), (q, k, v)) | |
| sim = einsum("b i d, b j d -> b i j", q, k) * self.scale | |
| if self.use_relative_position: | |
| len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1] | |
| k2 = self.relative_position_k(len_q, len_k) | |
| sim2 = einsum("b t d, t s d -> b t s", q, k2) * self.scale | |
| sim += sim2 | |
| if exists(self.mask): | |
| if mask is None: | |
| mask = self.mask.to(sim.device) | |
| else: | |
| # .to(sim.device) | |
| mask = self.mask.to(sim.device).bool() & mask | |
| else: | |
| mask = mask | |
| if mask is not None: | |
| max_neg_value = -1e9 | |
| sim = sim + (1 - mask.float()) * max_neg_value # 1=masking,0=no masking | |
| attn = sim.softmax(dim=-1) | |
| out = einsum("b i j, b j d -> b i d", attn, v) | |
| if self.bidirectional_causal_attn: | |
| mask_reverse = torch.triu( | |
| torch.ones( | |
| [1, self.temporal_length, self.temporal_length], device=sim.device | |
| ) | |
| ) | |
| sim_reverse = sim.float().masked_fill(mask_reverse == 0, max_neg_value) | |
| attn_reverse = sim_reverse.softmax(dim=-1) | |
| out_reverse = einsum("b i j, b j d -> b i d", attn_reverse, v) | |
| out += out_reverse | |
| if self.use_relative_position: | |
| v2 = self.relative_position_v(len_q, len_v) | |
| out2 = einsum("b t s, t s d -> b t d", attn, v2) | |
| out += out2 | |
| out = rearrange(out, "(b h) n d -> b n (h d)", h=nh) | |
| return self.to_out(out) | |
| class CrossAttention(nn.Module): | |
| def __init__( | |
| self, | |
| query_dim, | |
| context_dim=None, | |
| heads=8, | |
| dim_head=64, | |
| dropout=0.0, | |
| sa_shared_kv=False, | |
| shared_type="only_first", | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| context_dim = default(context_dim, query_dim) | |
| self.sa_shared_kv = sa_shared_kv | |
| assert shared_type in [ | |
| "only_first", | |
| "all_frames", | |
| "first_and_prev", | |
| "only_prev", | |
| "full", | |
| "causal", | |
| "full_qkv", | |
| ] | |
| self.shared_type = shared_type | |
| self.scale = dim_head**-0.5 | |
| self.heads = heads | |
| self.dim_head = dim_head | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
| self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_out = nn.Sequential( | |
| nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) | |
| ) | |
| if XFORMERS_IS_AVAILBLE: | |
| self.forward = self.efficient_forward | |
| def forward(self, x, context=None, mask=None): | |
| h = self.heads | |
| b = x.shape[0] | |
| q = self.to_q(x) | |
| context = default(context, x) | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| if self.sa_shared_kv: | |
| if self.shared_type == "only_first": | |
| k, v = map( | |
| lambda xx: rearrange(xx[0].unsqueeze(0), "b n c -> (b n) c") | |
| .unsqueeze(0) | |
| .repeat(b, 1, 1), | |
| (k, v), | |
| ) | |
| else: | |
| raise NotImplementedError | |
| q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v)) | |
| sim = einsum("b i d, b j d -> b i j", q, k) * self.scale | |
| if exists(mask): | |
| mask = rearrange(mask, "b ... -> b (...)") | |
| max_neg_value = -torch.finfo(sim.dtype).max | |
| mask = repeat(mask, "b j -> (b h) () j", h=h) | |
| sim.masked_fill_(~mask, max_neg_value) | |
| # attention, what we cannot get enough of | |
| attn = sim.softmax(dim=-1) | |
| out = einsum("b i j, b j d -> b i d", attn, v) | |
| out = rearrange(out, "(b h) n d -> b n (h d)", h=h) | |
| return self.to_out(out) | |
| def efficient_forward(self, x, context=None, mask=None): | |
| q = self.to_q(x) | |
| context = default(context, x) | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| b, _, _ = q.shape | |
| q, k, v = map( | |
| lambda t: t.unsqueeze(3) | |
| .reshape(b, t.shape[1], self.heads, self.dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b * self.heads, t.shape[1], self.dim_head) | |
| .contiguous(), | |
| (q, k, v), | |
| ) | |
| # actually compute the attention, what we cannot get enough of | |
| out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None) | |
| if exists(mask): | |
| raise NotImplementedError | |
| out = ( | |
| out.unsqueeze(0) | |
| .reshape(b, self.heads, out.shape[1], self.dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b, out.shape[1], self.heads * self.dim_head) | |
| ) | |
| return self.to_out(out) | |
| class VideoSpatialCrossAttention(CrossAttention): | |
| def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0): | |
| super().__init__(query_dim, context_dim, heads, dim_head, dropout) | |
| def forward(self, x, context=None, mask=None): | |
| b, c, t, h, w = x.shape | |
| if context is not None: | |
| context = context.repeat(t, 1, 1) | |
| x = super.forward(spatial_attn_reshape(x), context=context) + x | |
| return spatial_attn_reshape_back(x, b, h) | |
| class BasicTransformerBlockST(nn.Module): | |
| def __init__( | |
| self, | |
| # Spatial Stuff | |
| dim, | |
| n_heads, | |
| d_head, | |
| dropout=0.0, | |
| context_dim=None, | |
| gated_ff=True, | |
| checkpoint=True, | |
| # Temporal Stuff | |
| temporal_length=None, | |
| image_length=None, | |
| use_relative_position=True, | |
| img_video_joint_train=False, | |
| cross_attn_on_tempoal=False, | |
| temporal_crossattn_type="selfattn", | |
| order="stst", | |
| temporalcrossfirst=False, | |
| temporal_context_dim=None, | |
| split_stcontext=False, | |
| local_spatial_temporal_attn=False, | |
| window_size=2, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| # Self attention | |
| self.attn1 = CrossAttention( | |
| query_dim=dim, | |
| heads=n_heads, | |
| dim_head=d_head, | |
| dropout=dropout, | |
| **kwargs, | |
| ) | |
| self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
| # cross attention if context is not None | |
| self.attn2 = CrossAttention( | |
| query_dim=dim, | |
| context_dim=context_dim, | |
| heads=n_heads, | |
| dim_head=d_head, | |
| dropout=dropout, | |
| **kwargs, | |
| ) | |
| self.norm1 = nn.LayerNorm(dim) | |
| self.norm2 = nn.LayerNorm(dim) | |
| self.norm3 = nn.LayerNorm(dim) | |
| self.checkpoint = checkpoint | |
| self.order = order | |
| assert self.order in ["stst", "sstt", "st_parallel"] | |
| self.temporalcrossfirst = temporalcrossfirst | |
| self.split_stcontext = split_stcontext | |
| self.local_spatial_temporal_attn = local_spatial_temporal_attn | |
| if self.local_spatial_temporal_attn: | |
| assert self.order == "stst" | |
| assert self.order == "stst" | |
| self.window_size = window_size | |
| if not split_stcontext: | |
| temporal_context_dim = context_dim | |
| # Temporal attention | |
| assert temporal_crossattn_type in ["selfattn", "crossattn", "skip"] | |
| self.temporal_crossattn_type = temporal_crossattn_type | |
| self.attn1_tmp = TemporalCrossAttention( | |
| query_dim=dim, | |
| heads=n_heads, | |
| dim_head=d_head, | |
| dropout=dropout, | |
| temporal_length=temporal_length, | |
| image_length=image_length, | |
| use_relative_position=use_relative_position, | |
| img_video_joint_train=img_video_joint_train, | |
| **kwargs, | |
| ) | |
| self.attn2_tmp = TemporalCrossAttention( | |
| query_dim=dim, | |
| heads=n_heads, | |
| dim_head=d_head, | |
| dropout=dropout, | |
| # cross attn | |
| context_dim=( | |
| temporal_context_dim if temporal_crossattn_type == "crossattn" else None | |
| ), | |
| # temporal attn | |
| temporal_length=temporal_length, | |
| image_length=image_length, | |
| use_relative_position=use_relative_position, | |
| img_video_joint_train=img_video_joint_train, | |
| **kwargs, | |
| ) | |
| self.norm4 = nn.LayerNorm(dim) | |
| self.norm5 = nn.LayerNorm(dim) | |
| def forward( | |
| self, | |
| x, | |
| context=None, | |
| temporal_context=None, | |
| no_temporal_attn=None, | |
| attn_mask=None, | |
| **kwargs, | |
| ): | |
| if not self.split_stcontext: | |
| # st cross attention use the same context vector | |
| temporal_context = context.detach().clone() | |
| if context is None and temporal_context is None: | |
| # self-attention models | |
| if no_temporal_attn: | |
| raise NotImplementedError | |
| return gradient_checkpoint( | |
| self._forward_nocontext, (x), self.parameters(), self.checkpoint | |
| ) | |
| else: | |
| # cross-attention models | |
| if no_temporal_attn: | |
| forward_func = self._forward_no_temporal_attn | |
| else: | |
| forward_func = self._forward | |
| inputs = ( | |
| (x, context, temporal_context) | |
| if temporal_context is not None | |
| else (x, context) | |
| ) | |
| return gradient_checkpoint( | |
| forward_func, inputs, self.parameters(), self.checkpoint | |
| ) | |
| def _forward( | |
| self, | |
| x, | |
| context=None, | |
| temporal_context=None, | |
| mask=None, | |
| no_temporal_attn=None, | |
| ): | |
| assert x.dim() == 5, f"x shape = {x.shape}" | |
| b, c, t, h, w = x.shape | |
| if self.order in ["stst", "sstt"]: | |
| x = self._st_cross_attn( | |
| x, | |
| context, | |
| temporal_context=temporal_context, | |
| order=self.order, | |
| mask=mask, | |
| ) # no_temporal_attn=no_temporal_attn, | |
| elif self.order == "st_parallel": | |
| x = self._st_cross_attn_parallel( | |
| x, | |
| context, | |
| temporal_context=temporal_context, | |
| order=self.order, | |
| ) # no_temporal_attn=no_temporal_attn, | |
| else: | |
| raise NotImplementedError | |
| x = self.ff(self.norm3(x)) + x | |
| if (no_temporal_attn is None) or (not no_temporal_attn): | |
| x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d | |
| elif no_temporal_attn: | |
| x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d | |
| return x | |
| def _forward_no_temporal_attn( | |
| self, | |
| x, | |
| context=None, | |
| temporal_context=None, | |
| ): | |
| assert x.dim() == 5, f"x shape = {x.shape}" | |
| b, c, t, h, w = x.shape | |
| if self.order in ["stst", "sstt"]: | |
| mask = torch.zeros([1, t, t], device=x.device).bool() | |
| x = self._st_cross_attn( | |
| x, | |
| context, | |
| temporal_context=temporal_context, | |
| order=self.order, | |
| mask=mask, | |
| ) | |
| elif self.order == "st_parallel": | |
| x = self._st_cross_attn_parallel( | |
| x, | |
| context, | |
| temporal_context=temporal_context, | |
| order=self.order, | |
| no_temporal_attn=True, | |
| ) | |
| else: | |
| raise NotImplementedError | |
| x = self.ff(self.norm3(x)) + x | |
| x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d | |
| return x | |
| def _forward_nocontext(self, x, no_temporal_attn=None): | |
| assert x.dim() == 5, f"x shape = {x.shape}" | |
| b, c, t, h, w = x.shape | |
| if self.order in ["stst", "sstt"]: | |
| x = self._st_cross_attn( | |
| x, order=self.order, no_temporal_attn=no_temporal_attn | |
| ) | |
| elif self.order == "st_parallel": | |
| x = self._st_cross_attn_parallel( | |
| x, order=self.order, no_temporal_attn=no_temporal_attn | |
| ) | |
| else: | |
| raise NotImplementedError | |
| x = self.ff(self.norm3(x)) + x | |
| x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d | |
| return x | |
| def _st_cross_attn( | |
| self, x, context=None, temporal_context=None, order="stst", mask=None | |
| ): | |
| b, c, t, h, w = x.shape | |
| if order == "stst": | |
| x = rearrange(x, "b c t h w -> (b t) (h w) c") | |
| x = self.attn1(self.norm1(x)) + x | |
| x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h) | |
| if self.local_spatial_temporal_attn: | |
| x = local_spatial_temporal_attn_reshape(x, window_size=self.window_size) | |
| else: | |
| x = rearrange(x, "b c t h w -> (b h w) t c") | |
| x = self.attn1_tmp(self.norm4(x), mask=mask) + x | |
| if self.local_spatial_temporal_attn: | |
| x = local_spatial_temporal_attn_reshape_back( | |
| x, window_size=self.window_size, b=b, h=h, w=w, t=t | |
| ) | |
| else: | |
| x = rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) # 3d -> 5d | |
| # spatial cross attention | |
| x = rearrange(x, "b c t h w -> (b t) (h w) c") | |
| if context is not None: | |
| if context.shape[0] == t: # img captions no_temporal_attn or | |
| context_ = context | |
| else: | |
| context_ = [] | |
| for i in range(context.shape[0]): | |
| context_.append(context[i].unsqueeze(0).repeat(t, 1, 1)) | |
| context_ = torch.cat(context_, dim=0) | |
| else: | |
| context_ = None | |
| x = self.attn2(self.norm2(x), context=context_) + x | |
| # temporal cross attention | |
| # if (no_temporal_attn is None) or (not no_temporal_attn): | |
| x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h) | |
| x = rearrange(x, "b c t h w -> (b h w) t c") | |
| if self.temporal_crossattn_type == "crossattn": | |
| # tmporal cross attention | |
| if temporal_context is not None: | |
| # print(f'STATTN context={context.shape}, temporal_context={temporal_context.shape}') | |
| temporal_context = torch.cat( | |
| [context, temporal_context], dim=1 | |
| ) # blc | |
| # print(f'STATTN after concat temporal_context={temporal_context.shape}') | |
| temporal_context = temporal_context.repeat(h * w, 1, 1) | |
| # print(f'after repeat temporal_context={temporal_context.shape}') | |
| else: | |
| temporal_context = context[0:1, ...].repeat(h * w, 1, 1) | |
| # print(f'STATTN after concat x={x.shape}') | |
| x = ( | |
| self.attn2_tmp(self.norm5(x), context=temporal_context, mask=mask) | |
| + x | |
| ) | |
| elif self.temporal_crossattn_type == "selfattn": | |
| # temporal self attention | |
| x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x | |
| elif self.temporal_crossattn_type == "skip": | |
| # no temporal cross and self attention | |
| pass | |
| else: | |
| raise NotImplementedError | |
| elif order == "sstt": | |
| # spatial self attention | |
| x = rearrange(x, "b c t h w -> (b t) (h w) c") | |
| x = self.attn1(self.norm1(x)) + x | |
| # spatial cross attention | |
| context_ = context.repeat(t, 1, 1) if context is not None else None | |
| x = self.attn2(self.norm2(x), context=context_) + x | |
| x = rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h) | |
| if (no_temporal_attn is None) or (not no_temporal_attn): | |
| if self.temporalcrossfirst: | |
| # temporal cross attention | |
| if self.temporal_crossattn_type == "crossattn": | |
| # if temporal_context is not None: | |
| temporal_context = context.repeat(h * w, 1, 1) | |
| x = ( | |
| self.attn2_tmp( | |
| self.norm5(x), context=temporal_context, mask=mask | |
| ) | |
| + x | |
| ) | |
| elif self.temporal_crossattn_type == "selfattn": | |
| x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x | |
| elif self.temporal_crossattn_type == "skip": | |
| pass | |
| else: | |
| raise NotImplementedError | |
| # temporal self attention | |
| x = rearrange(x, "b c t h w -> (b h w) t c") | |
| x = self.attn1_tmp(self.norm4(x), mask=mask) + x | |
| else: | |
| # temporal self attention | |
| x = rearrange(x, "b c t h w -> (b h w) t c") | |
| x = self.attn1_tmp(self.norm4(x), mask=mask) + x | |
| # temporal cross attention | |
| if self.temporal_crossattn_type == "crossattn": | |
| if temporal_context is not None: | |
| temporal_context = context.repeat(h * w, 1, 1) | |
| x = ( | |
| self.attn2_tmp( | |
| self.norm5(x), context=temporal_context, mask=mask | |
| ) | |
| + x | |
| ) | |
| elif self.temporal_crossattn_type == "selfattn": | |
| x = self.attn2_tmp(self.norm5(x), context=None, mask=mask) + x | |
| elif self.temporal_crossattn_type == "skip": | |
| pass | |
| else: | |
| raise NotImplementedError | |
| else: | |
| raise NotImplementedError | |
| return x | |
| def _st_cross_attn_parallel( | |
| self, x, context=None, temporal_context=None, order="sst", no_temporal_attn=None | |
| ): | |
| """order: x -> Self Attn -> Cross Attn -> attn_s | |
| x -> Temp Self Attn -> attn_t | |
| x' = x + attn_s + attn_t | |
| """ | |
| if no_temporal_attn is not None: | |
| raise NotImplementedError | |
| B, C, T, H, W = x.shape | |
| # spatial self attention | |
| h = x | |
| h = rearrange(h, "b c t h w -> (b t) (h w) c") | |
| h = self.attn1(self.norm1(h)) + h | |
| # spatial cross | |
| # context_ = context.repeat(T, 1, 1) if context is not None else None | |
| if context is not None: | |
| context_ = [] | |
| for i in range(context.shape[0]): | |
| context_.append(context[i].unsqueeze(0).repeat(T, 1, 1)) | |
| context_ = torch.cat(context_, dim=0) | |
| else: | |
| context_ = None | |
| h = self.attn2(self.norm2(h), context=context_) + h | |
| h = rearrange(h, "(b t) (h w) c -> b c t h w", b=B, h=H) | |
| # temporal self | |
| h2 = x | |
| h2 = rearrange(h2, "b c t h w -> (b h w) t c") | |
| h2 = self.attn1_tmp(self.norm4(h2)) # + h2 | |
| h2 = rearrange(h2, "(b h w) t c -> b c t h w", b=B, h=H, w=W) | |
| out = h + h2 | |
| return rearrange(out, "b c t h w -> (b h w) t c") | |
| def spatial_attn_reshape(x): | |
| return rearrange(x, "b c t h w -> (b t) (h w) c") | |
| def spatial_attn_reshape_back(x, b, h): | |
| return rearrange(x, "(b t) (h w) c -> b c t h w", b=b, h=h) | |
| def temporal_attn_reshape(x): | |
| return rearrange(x, "b c t h w -> (b h w) t c") | |
| def temporal_attn_reshape_back(x, b, h, w): | |
| return rearrange(x, "(b h w) t c -> b c t h w", b=b, h=h, w=w) | |
| def local_spatial_temporal_attn_reshape(x, window_size): | |
| B, C, T, H, W = x.shape | |
| NH = H // window_size | |
| NW = W // window_size | |
| # x = x.view(B, C, T, NH, window_size, NW, window_size) | |
| # tokens = x.permute(0, 1, 2, 3, 5, 4, 6).contiguous() | |
| # tokens = tokens.view(-1, window_size, window_size, C) | |
| x = rearrange( | |
| x, | |
| "b c t (nh wh) (nw ww) -> b c t nh wh nw ww", | |
| nh=NH, | |
| nw=NW, | |
| wh=window_size, | |
| # # B, C, T, NH, NW, window_size, window_size | |
| ww=window_size, | |
| ).contiguous() | |
| # (B, NH, NW) (T, window_size, window_size) C | |
| x = rearrange(x, "b c t nh wh nw ww -> (b nh nw) (t wh ww) c") | |
| return x | |
| def local_spatial_temporal_attn_reshape_back(x, window_size, b, h, w, t): | |
| B, L, C = x.shape | |
| NH = h // window_size | |
| NW = w // window_size | |
| x = rearrange( | |
| x, | |
| "(b nh nw) (t wh ww) c -> b c t nh wh nw ww", | |
| b=b, | |
| nh=NH, | |
| nw=NW, | |
| t=t, | |
| wh=window_size, | |
| ww=window_size, | |
| ) | |
| x = rearrange(x, "b c t nh wh nw ww -> b c t (nh wh) (nw ww)") | |
| return x | |
| class SpatialTemporalTransformer(nn.Module): | |
| """ | |
| Transformer block for video-like data (5D tensor). | |
| First, project the input (aka embedding) with NO reshape. | |
| Then apply standard transformer action. | |
| The 5D -> 3D reshape operation will be done in the specific attention module. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels, | |
| n_heads, | |
| d_head, | |
| depth=1, | |
| dropout=0.0, | |
| context_dim=None, | |
| # Temporal stuff | |
| temporal_length=None, | |
| image_length=None, | |
| use_relative_position=True, | |
| img_video_joint_train=False, | |
| cross_attn_on_tempoal=False, | |
| temporal_crossattn_type=False, | |
| order="stst", | |
| temporalcrossfirst=False, | |
| split_stcontext=False, | |
| temporal_context_dim=None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| inner_dim = n_heads * d_head | |
| self.norm = Normalize(in_channels) | |
| self.proj_in = nn.Conv3d( | |
| in_channels, inner_dim, kernel_size=1, stride=1, padding=0 | |
| ) | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlockST( | |
| inner_dim, | |
| n_heads, | |
| d_head, | |
| dropout=dropout, | |
| # cross attn | |
| context_dim=context_dim, | |
| # temporal attn | |
| temporal_length=temporal_length, | |
| image_length=image_length, | |
| use_relative_position=use_relative_position, | |
| img_video_joint_train=img_video_joint_train, | |
| temporal_crossattn_type=temporal_crossattn_type, | |
| order=order, | |
| temporalcrossfirst=temporalcrossfirst, | |
| split_stcontext=split_stcontext, | |
| temporal_context_dim=temporal_context_dim, | |
| **kwargs, | |
| ) | |
| for d in range(depth) | |
| ] | |
| ) | |
| self.proj_out = zero_module( | |
| nn.Conv3d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) | |
| ) | |
| def forward(self, x, context=None, temporal_context=None, **kwargs): | |
| # note: if no context is given, cross-attention defaults to self-attention | |
| assert x.dim() == 5, f"x shape = {x.shape}" | |
| b, c, t, h, w = x.shape | |
| x_in = x | |
| x = self.norm(x) | |
| x = self.proj_in(x) | |
| for block in self.transformer_blocks: | |
| x = block(x, context=context, temporal_context=temporal_context, **kwargs) | |
| x = self.proj_out(x) | |
| return x + x_in | |
| class STAttentionBlock2(nn.Module): | |
| def __init__( | |
| self, | |
| channels, | |
| num_heads=1, | |
| num_head_channels=-1, | |
| use_checkpoint=False, # not used, only used in ResBlock | |
| use_new_attention_order=False, # QKVAttention or QKVAttentionLegacy | |
| temporal_length=16, # used in relative positional representation. | |
| image_length=8, # used for image-video joint training. | |
| # whether use relative positional representation in temporal attention. | |
| use_relative_position=False, | |
| img_video_joint_train=False, | |
| # norm_type="groupnorm", | |
| attn_norm_type="group", | |
| use_tempoal_causal_attn=False, | |
| ): | |
| """ | |
| version 1: guided_diffusion implemented version | |
| version 2: remove args input argument | |
| """ | |
| super().__init__() | |
| if num_head_channels == -1: | |
| self.num_heads = num_heads | |
| else: | |
| assert ( | |
| channels % num_head_channels == 0 | |
| ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" | |
| self.num_heads = channels // num_head_channels | |
| self.use_checkpoint = use_checkpoint | |
| self.temporal_length = temporal_length | |
| self.image_length = image_length | |
| self.use_relative_position = use_relative_position | |
| self.img_video_joint_train = img_video_joint_train | |
| self.attn_norm_type = attn_norm_type | |
| assert self.attn_norm_type in ["group", "no_norm"] | |
| self.use_tempoal_causal_attn = use_tempoal_causal_attn | |
| if self.attn_norm_type == "group": | |
| self.norm_s = normalization(channels) | |
| self.norm_t = normalization(channels) | |
| self.qkv_s = conv_nd(1, channels, channels * 3, 1) | |
| self.qkv_t = conv_nd(1, channels, channels * 3, 1) | |
| if self.img_video_joint_train: | |
| mask = th.ones( | |
| [1, temporal_length + image_length, temporal_length + image_length] | |
| ) | |
| mask[:, temporal_length:, :] = 0 | |
| mask[:, :, temporal_length:] = 0 | |
| self.register_buffer("mask", mask) | |
| else: | |
| self.mask = None | |
| if use_new_attention_order: | |
| # split qkv before split heads | |
| self.attention_s = QKVAttention(self.num_heads) | |
| self.attention_t = QKVAttention(self.num_heads) | |
| else: | |
| # split heads before split qkv | |
| self.attention_s = QKVAttentionLegacy(self.num_heads) | |
| self.attention_t = QKVAttentionLegacy(self.num_heads) | |
| if use_relative_position: | |
| self.relative_position_k = RelativePosition( | |
| num_units=channels // self.num_heads, | |
| max_relative_position=temporal_length, | |
| ) | |
| self.relative_position_v = RelativePosition( | |
| num_units=channels // self.num_heads, | |
| max_relative_position=temporal_length, | |
| ) | |
| self.proj_out_s = zero_module( | |
| # conv_dim, in_channels, out_channels, kernel_size | |
| conv_nd(1, channels, channels, 1) | |
| ) | |
| self.proj_out_t = zero_module( | |
| # conv_dim, in_channels, out_channels, kernel_size | |
| conv_nd(1, channels, channels, 1) | |
| ) | |
| def forward(self, x, mask=None): | |
| b, c, t, h, w = x.shape | |
| # spatial | |
| out = rearrange(x, "b c t h w -> (b t) c (h w)") | |
| if self.attn_norm_type == "no_norm": | |
| qkv = self.qkv_s(out) | |
| else: | |
| qkv = self.qkv_s(self.norm_s(out)) | |
| out = self.attention_s(qkv) | |
| out = self.proj_out_s(out) | |
| out = rearrange(out, "(b t) c (h w) -> b c t h w", b=b, h=h) | |
| x += out | |
| # temporal | |
| out = rearrange(x, "b c t h w -> (b h w) c t") | |
| if self.attn_norm_type == "no_norm": | |
| qkv = self.qkv_t(out) | |
| else: | |
| qkv = self.qkv_t(self.norm_t(out)) | |
| # relative positional embedding | |
| if self.use_relative_position: | |
| len_q = qkv.size()[-1] | |
| len_k, len_v = len_q, len_q | |
| k_rp = self.relative_position_k(len_q, len_k) | |
| v_rp = self.relative_position_v(len_q, len_v) # [T,T,head_dim] | |
| out = self.attention_t( | |
| qkv, | |
| rp=(k_rp, v_rp), | |
| mask=self.mask, | |
| use_tempoal_causal_attn=self.use_tempoal_causal_attn, | |
| ) | |
| else: | |
| out = self.attention_t( | |
| qkv, | |
| rp=None, | |
| mask=self.mask, | |
| use_tempoal_causal_attn=self.use_tempoal_causal_attn, | |
| ) | |
| out = self.proj_out_t(out) | |
| out = rearrange(out, "(b h w) c t -> b c t h w", b=b, h=h, w=w) | |
| return x + out | |
| class QKVAttentionLegacy(nn.Module): | |
| """ | |
| A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping | |
| """ | |
| def __init__(self, n_heads): | |
| super().__init__() | |
| self.n_heads = n_heads | |
| def forward(self, qkv, rp=None, mask=None): | |
| """ | |
| Apply QKV attention. | |
| :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. | |
| :return: an [N x (H * C) x T] tensor after attention. | |
| """ | |
| if rp is not None or mask is not None: | |
| raise NotImplementedError | |
| bs, width, length = qkv.shape | |
| assert width % (3 * self.n_heads) == 0 | |
| ch = width // (3 * self.n_heads) | |
| q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) | |
| scale = 1 / math.sqrt(math.sqrt(ch)) | |
| weight = th.einsum( | |
| "bct,bcs->bts", q * scale, k * scale | |
| ) # More stable with f16 than dividing afterwards | |
| weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) | |
| a = th.einsum("bts,bcs->bct", weight, v) | |
| return a.reshape(bs, -1, length) | |
| def count_flops(model, _x, y): | |
| return count_flops_attn(model, _x, y) | |
| class QKVAttention(nn.Module): | |
| """ | |
| A module which performs QKV attention and splits in a different order. | |
| """ | |
| def __init__(self, n_heads): | |
| super().__init__() | |
| self.n_heads = n_heads | |
| def forward(self, qkv, rp=None, mask=None, use_tempoal_causal_attn=False): | |
| """ | |
| Apply QKV attention. | |
| :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs. | |
| :return: an [N x (H * C) x T] tensor after attention. | |
| """ | |
| bs, width, length = qkv.shape | |
| assert width % (3 * self.n_heads) == 0 | |
| ch = width // (3 * self.n_heads) | |
| # print('qkv', qkv.size()) | |
| q, k, v = qkv.chunk(3, dim=1) | |
| scale = 1 / math.sqrt(math.sqrt(ch)) | |
| # print('bs, self.n_heads, ch, length', bs, self.n_heads, ch, length) | |
| weight = th.einsum( | |
| "bct,bcs->bts", | |
| (q * scale).view(bs * self.n_heads, ch, length), | |
| (k * scale).view(bs * self.n_heads, ch, length), | |
| ) # More stable with f16 than dividing afterwards | |
| # weight:[b,t,s] b=bs*n_heads*T | |
| if rp is not None: | |
| k_rp, v_rp = rp # [length, length, head_dim] [8, 8, 48] | |
| weight2 = th.einsum( | |
| "bct,tsc->bst", (q * scale).view(bs * self.n_heads, ch, length), k_rp | |
| ) | |
| weight += weight2 | |
| if use_tempoal_causal_attn: | |
| # weight = torch.tril(weight) | |
| assert mask is None, f"Not implemented for merging two masks!" | |
| mask = torch.tril(torch.ones(weight.shape)) | |
| else: | |
| if mask is not None: # only keep upper-left matrix | |
| # process mask | |
| c, t, _ = weight.shape | |
| if mask.shape[-1] > t: | |
| mask = mask[:, :t, :t] | |
| elif mask.shape[-1] < t: # pad ones | |
| mask_ = th.zeros([c, t, t]).to(mask.device) | |
| t_ = mask.shape[-1] | |
| mask_[:, :t_, :t_] = mask | |
| mask = mask_ | |
| else: | |
| assert ( | |
| weight.shape[-1] == mask.shape[-1] | |
| ), f"weight={weight.shape}, mask={mask.shape}" | |
| if mask is not None: | |
| INF = -1e8 # float('-inf') | |
| weight = weight.float().masked_fill(mask == 0, INF) | |
| weight = F.softmax(weight.float(), dim=-1).type( | |
| weight.dtype | |
| ) # [256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes | |
| # weight = F.softmax(weight, dim=-1)#[256, 8, 8] [b, t, t] b=bs*n_heads*h*w,t=nframes | |
| # [256, 48, 8] [b, head_dim, t] | |
| a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length)) | |
| if rp is not None: | |
| a2 = th.einsum("bts,tsc->btc", weight, v_rp).transpose(1, 2) # btc->bct | |
| a += a2 | |
| return a.reshape(bs, -1, length) | |