Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,669 Bytes
0b23d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 |
import datetime
import json
import os
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
import PIL.Image
import numpy as np
import torch
import torchvision.transforms.functional
from numpy import deg2rad
from omegaconf import OmegaConf
from core.data.camera_pose_utils import convert_w2c_between_c2w
from core.data.combined_multi_view_dataset import (
get_ray_embeddings,
normalize_w2c_camera_pose_sequence,
crop_and_resize,
)
from main.evaluation.funcs import load_model_checkpoint
from main.evaluation.pose_interpolation import (
move_pose,
interpolate_camera_poses,
generate_spherical_trajectory,
)
from main.evaluation.utils_eval import process_inference_batch
from utils.utils import instantiate_from_config
from core.models.samplers.ddim import DDIMSampler
torch.set_float32_matmul_precision("medium")
gpu_no = 0
config = "./configs/dual_stream/nvcomposer.yaml"
ckpt = hf_hub_download(
repo_id="TencentARC/NVComposer", filename="NVComposer-V0.1.ckpt", repo_type="model"
)
model_resolution_height, model_resolution_width = 576, 1024
num_views = 16
dtype = torch.float16
config = OmegaConf.load(config)
model_config = config.pop("model", OmegaConf.create())
model_config.params.train_with_multi_view_feature_alignment = False
model = instantiate_from_config(model_config).cuda(gpu_no).to(dtype=dtype)
assert os.path.exists(ckpt), f"Error: checkpoint [{ckpt}] Not Found!"
print(f"Loading checkpoint from {ckpt}...")
model = load_model_checkpoint(model, ckpt)
model.eval()
latent_h, latent_w = (
model_resolution_height // 8,
model_resolution_width // 8,
)
channels = model.channels
sampler = DDIMSampler(model)
EXAMPLES = [
[
"./assets/sample1.jpg",
None,
1,
0,
0,
1,
0,
0,
0,
0,
0,
-0.2,
3,
1.5,
20,
"./assets/sample1.mp4",
1,
],
[
"./assets/sample2.jpg",
None,
0,
0,
25,
1,
0,
0,
0,
0,
0,
0,
3,
1.5,
20,
"./assets/sample2.mp4",
1,
],
[
"./assets/sample3.jpg",
None,
0,
0,
15,
1,
0,
0,
0,
0,
0,
0,
3,
1.5,
20,
"./assets/sample3.mp4",
1,
],
[
"./assets/sample4.jpg",
None,
0,
0,
-15,
1,
0,
0,
0,
0,
0,
0,
3,
1.5,
20,
"./assets/sample4.mp4",
1,
],
[
"./assets/sample5-1.png",
"./assets/sample5-2.png",
0,
0,
-30,
1,
0,
0,
0,
0,
0,
0,
3,
1.5,
20,
"./assets/sample5.mp4",
2,
],
]
def compose_data_item(
num_views,
cond_pil_image_list,
caption="",
camera_mode=False,
input_pose_format="c2w",
model_pose_format="c2w",
x_rotation_angle=10,
y_rotation_angle=10,
z_rotation_angle=10,
x_translation=0.5,
y_translation=0.5,
z_translation=0.5,
image_size=None,
spherical_angle_x=10,
spherical_angle_y=10,
spherical_radius=10,
):
if image_size is None:
image_size = [512, 512]
latent_size = [image_size[0] // 8, image_size[1] // 8]
def image_processing_function(x):
return (
torch.from_numpy(
np.array(
crop_and_resize(
x, target_height=image_size[0], target_width=image_size[1]
)
).transpose((2, 0, 1))
).float()
/ 255.0
)
resizer_image_to_latent_size = torchvision.transforms.Resize(
size=latent_size,
interpolation=torchvision.transforms.InterpolationMode.BILINEAR,
antialias=True,
)
num_cond_views = len(cond_pil_image_list)
print(f"Number of received condition images: {num_cond_views}.")
num_target_views = num_views - num_cond_views
if camera_mode == 1:
print("Camera Mode: Movement with Rotation and Translation.")
start_pose = torch.tensor(
[
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
]
).float()
end_pose = move_pose(
start_pose,
x_angle=torch.tensor(deg2rad(x_rotation_angle)),
y_angle=torch.tensor(deg2rad(y_rotation_angle)),
z_angle=torch.tensor(deg2rad(z_rotation_angle)),
translation=torch.tensor([x_translation, y_translation, z_translation]),
)
target_poses = interpolate_camera_poses(
start_pose, end_pose, num_steps=num_target_views
)
elif camera_mode == 0:
print("Camera Mode: Spherical Movement.")
target_poses = generate_spherical_trajectory(
end_angles=(spherical_angle_x, spherical_angle_y),
radius=spherical_radius,
num_steps=num_target_views,
)
print("Target pose sequence (before normalization): \n ", target_poses)
cond_poses = [
torch.tensor(
[
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
]
).float()
] * num_cond_views
target_poses = torch.stack(target_poses, dim=0).float()
cond_poses = torch.stack(cond_poses, dim=0).float()
if not camera_mode != 0 and (input_pose_format != "w2c"):
# c2w to w2c. Input for normalize_camera_pose_sequence() should be w2c
target_poses = convert_w2c_between_c2w(target_poses)
cond_poses = convert_w2c_between_c2w(cond_poses)
target_poses, cond_poses = normalize_w2c_camera_pose_sequence(
target_poses,
cond_poses,
output_c2w=model_pose_format == "c2w",
translation_norm_mode="disabled",
)
target_and_condition_camera_poses = torch.cat([target_poses, cond_poses], dim=0)
print("Target pose sequence (after normalization): \n ", target_poses)
fov_xy = [80, 45]
target_rays = get_ray_embeddings(
target_poses,
size_h=image_size[0],
size_w=image_size[1],
fov_xy_list=[fov_xy for _ in range(num_target_views)],
)
condition_rays = get_ray_embeddings(
cond_poses,
size_h=image_size[0],
size_w=image_size[1],
fov_xy_list=[fov_xy for _ in range(num_cond_views)],
)
target_images_tensor = torch.zeros(
num_target_views, 3, image_size[0], image_size[1]
)
condition_images = [image_processing_function(x) for x in cond_pil_image_list]
condition_images_tensor = torch.stack(condition_images, dim=0) * 2.0 - 1.0
target_images_tensor[0, :, :, :] = condition_images_tensor[0, :, :, :]
target_and_condition_images_tensor = torch.cat(
[target_images_tensor, condition_images_tensor], dim=0
)
target_and_condition_rays_tensor = torch.cat([target_rays, condition_rays], dim=0)
target_and_condition_rays_tensor = resizer_image_to_latent_size(
target_and_condition_rays_tensor * 5.0
)
mask_preserving_target = torch.ones(size=[num_views, 1], dtype=torch.float16)
mask_preserving_target[num_target_views:] = 0.0
combined_fovs = torch.stack([torch.tensor(fov_xy)] * num_views, dim=0)
mask_only_preserving_first_target = torch.zeros_like(mask_preserving_target)
mask_only_preserving_first_target[0] = 1.0
mask_only_preserving_first_condition = torch.zeros_like(mask_preserving_target)
mask_only_preserving_first_condition[num_target_views] = 1.0
test_data = {
# T, C, H, W
"combined_images": target_and_condition_images_tensor.unsqueeze(0),
"mask_preserving_target": mask_preserving_target.unsqueeze(0), # T, 1
# T, 1
"mask_only_preserving_first_target": mask_only_preserving_first_target.unsqueeze(
0
),
# T, 1
"mask_only_preserving_first_condition": mask_only_preserving_first_condition.unsqueeze(
0
),
# T, C, H//8, W//8
"combined_rays": target_and_condition_rays_tensor.unsqueeze(0),
"combined_fovs": combined_fovs.unsqueeze(0),
"target_and_condition_camera_poses": target_and_condition_camera_poses.unsqueeze(
0
),
"num_target_images": torch.tensor([num_target_views]),
"num_cond_images": torch.tensor([num_cond_views]),
"num_cond_images_str": [str(num_cond_views)],
"item_idx": [0],
"subset_key": ["evaluation"],
"caption": [caption],
"fov_xy": torch.tensor(fov_xy).float().unsqueeze(0),
}
return test_data
def tensor_to_mp4(video, savepath, fps, nrow=None):
"""
video: torch.Tensor, b,t,c,h,w, value range: 0-1
"""
n = video.shape[0]
print("Video shape=", video.shape)
video = video.permute(1, 0, 2, 3, 4) # t,n,c,h,w
nrow = int(np.sqrt(n)) if nrow is None else nrow
frame_grids = [
torchvision.utils.make_grid(framesheet, nrow=nrow) for framesheet in video
] # [3, grid_h, grid_w]
# stack in temporal dim [T, 3, grid_h, grid_w]
grid = torch.stack(frame_grids, dim=0)
grid = torch.clamp(grid.float(), -1.0, 1.0)
# [T, 3, grid_h, grid_w] -> [T, grid_h, grid_w, 3]
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
# print(f'Save video to {savepath}')
torchvision.io.write_video(
savepath, grid, fps=fps, video_codec="h264", options={"crf": "10"}
)
def parse_to_np_array(input_string):
try:
# Try to parse the input as JSON first
data = json.loads(input_string)
arr = np.array(data)
except json.JSONDecodeError:
# If JSON parsing fails, assume it's a multi-line string and handle accordingly
lines = input_string.strip().splitlines()
data = []
for line in lines:
# Split the line by spaces and convert to floats
data.append([float(x) for x in line.split()])
arr = np.array(data)
# Check if the resulting array is 3x4
if arr.shape != (3, 4):
raise ValueError(f"Expected array shape (3, 4), but got {arr.shape}")
return arr
@spaces.GPU(duration=180)
def run_inference(
camera_mode,
input_cond_image1=None,
input_cond_image2=None,
input_cond_image3=None,
input_cond_image4=None,
input_pose_format="c2w",
model_pose_format="c2w",
x_rotation_angle=None,
y_rotation_angle=None,
z_rotation_angle=None,
x_translation=None,
y_translation=None,
z_translation=None,
trajectory_extension_factor=1,
cfg_scale=1.0,
cfg_scale_extra=1.0,
sample_steps=50,
num_images_slider=None,
spherical_angle_x=10,
spherical_angle_y=10,
spherical_radius=10,
random_seed=1,
):
cfg_scale_extra = 1.0 # Disable Extra CFG due to time limit of ZeroGPU
os.makedirs("./cache/", exist_ok=True)
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=dtype):
torch.manual_seed(random_seed)
input_cond_images = []
for _cond_image in [
input_cond_image1,
input_cond_image2,
input_cond_image3,
input_cond_image4,
]:
if _cond_image is not None:
if isinstance(_cond_image, np.ndarray):
_cond_image = PIL.Image.fromarray(_cond_image)
input_cond_images.append(_cond_image)
num_condition_views = len(input_cond_images)
assert (
num_images_slider == num_condition_views
), f"The `num_condition_views`={num_condition_views} while got `num_images_slider`={num_images_slider}."
input_caption = ""
num_target_views = num_views - num_condition_views
data_item = compose_data_item(
num_views=num_views,
cond_pil_image_list=input_cond_images,
caption=input_caption,
camera_mode=camera_mode,
input_pose_format=input_pose_format,
model_pose_format=model_pose_format,
x_rotation_angle=x_rotation_angle,
y_rotation_angle=y_rotation_angle,
z_rotation_angle=z_rotation_angle,
x_translation=x_translation,
y_translation=y_translation,
z_translation=z_translation,
image_size=[model_resolution_height, model_resolution_width],
spherical_angle_x=spherical_angle_x,
spherical_angle_y=spherical_angle_y,
spherical_radius=spherical_radius,
)
batch = data_item
if trajectory_extension_factor == 1:
print("No trajectory extension.")
else:
print(f"Trajectory is enabled: {trajectory_extension_factor}.")
full_x_samples = []
for repeat_idx in range(int(trajectory_extension_factor)):
if repeat_idx != 0:
batch["combined_images"][:, 0, :, :, :] = full_x_samples[-1][
:, -1, :, :, :
]
batch["combined_images"][:, num_target_views, :, :, :] = (
full_x_samples[-1][:, -1, :, :, :]
)
cond, uc, uc_extra, x_rec = process_inference_batch(
cfg_scale, batch, model, with_uncondition_extra=True
)
batch_size = x_rec.shape[0]
shape_without_batch = (num_views, channels, latent_h, latent_w)
samples, _ = sampler.sample(
sample_steps,
batch_size=batch_size,
shape=shape_without_batch,
conditioning=cond,
verbose=True,
unconditional_conditioning=uc,
unconditional_guidance_scale=cfg_scale,
unconditional_conditioning_extra=uc_extra,
unconditional_guidance_scale_extra=cfg_scale_extra,
x_T=None,
expand_mode=False,
num_target_views=num_views - num_condition_views,
num_condition_views=num_condition_views,
dense_expansion_ratio=None,
pred_x0_post_process_function=None,
pred_x0_post_process_function_kwargs=None,
)
if samples.size(2) > 4:
image_samples = samples[:, :num_target_views, :4, :, :]
else:
image_samples = samples
per_instance_decoding = False
if per_instance_decoding:
x_samples = []
for item_idx in range(image_samples.shape[0]):
image_samples = image_samples[
item_idx : item_idx + 1, :, :, :, :
]
x_sample = model.decode_first_stage(image_samples)
x_samples.append(x_sample)
x_samples = torch.cat(x_samples, dim=0)
else:
x_samples = model.decode_first_stage(image_samples)
full_x_samples.append(x_samples[:, :num_target_views, ...])
full_x_samples = torch.concat(full_x_samples, dim=1)
x_samples = full_x_samples
x_samples = torch.clamp((x_samples + 1.0) / 2.0, 0.0, 1.0)
video_name = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") + ".mp4"
video_path = "./cache/" + video_name
tensor_to_mp4(x_samples.detach().cpu(), fps=6, savepath=video_path)
return video_path
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center;">
<h1 style="text-align: center; color: #333333;">πΈ NVComposer</h1>
<h3 style="text-align: center; color: #333333;">Generative Novel View Synthesis with Sparse and
Unposed Images</h3>
<p style="text-align: center; font-weight: bold">
<a href="https://lg-li.github.io/project/nvcomposer">π Project Page</a> |
<a href="https://arxiv.org/abs/2412.03517">π ArXiv Preprint</a> |
<a href="https://github.com/TencentARC/NVComposer">π§βπ» Github Repository</a>
</p>
<p style="text-align: left; font-size: 1.1em;">
Welcome to the demo of <strong>NVComposer</strong>. Follow the steps below to explore its capabilities:
</p>
</div>
<div style="text-align: left; margin: 0 auto; ">
<ol style="font-size: 1.1em;">
<li><strong>Choose camera movement mode:</strong> Spherical Mode or Rotation & Translation Mode.</li>
<li><strong>Customize the camera trajectory:</strong> Adjust the spherical parameters or rotation/translations along the X, Y,
and Z axes.</li>
<li><strong>Upload images:</strong> You can upload up to 4 images as input conditions.</li>
<li><strong>Set sampling parameters (optional):</strong> Tweak the settings and click the <b>Generate</b> button.</li>
</ol>
<p>
β±οΈ <b>ZeroGPU Time Limit</b>: Hugging Face ZeroGPU has a inference time limit of 180 seconds.
You may need to <b>log in with a free account</b> to use this demo.
Large sampling steps might lead to timeout (GPU Abort).
In that case, please consider log in with a Pro account or run it on your local machine.
</p>
<p style="text-align: left; font-size: 1.1em;">π€ Please π star our <a href="https://github.com/TencentARC/NVComposer"> GitHub repo </a>
and click on the β€οΈ like button above if you find our work helpful. <br>
<a href="https://github.com/TencentARC/NVComposer"><img src="https://img.shields.io/github/stars/TencentARC%2FNVComposer"/></a> </p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
with gr.Accordion("Camera Movement Settings", open=True):
camera_mode = gr.Radio(
choices=[("Spherical Mode", 0), ("Rotation & Translation Mode", 1)],
label="Camera Mode",
value=0,
interactive=True,
)
with gr.Group(visible=True) as group_spherical:
# This tab can be left blank for now as per your request
# Add extra options manually here in the future
gr.HTML(
"""<p style="padding: 10px">
<b>Spherical Mode</b> allows you to control the camera's movement by specifying its position on a sphere centered around the scene.
Adjust the Polar Angle (vertical rotation), Azimuth Angle (horizontal rotation), and Radius (distance from the center of the anchor view) to define the camera's viewpoint.
The anchor view is considered located on the sphere at the specified radius, aligned with a zero polar angle and zero azimuth angle, oriented toward the origin.
</p>
"""
)
spherical_angle_x = gr.Slider(
minimum=-30,
maximum=30,
step=1,
value=0,
label="Polar Angle (Theta)",
)
spherical_angle_y = gr.Slider(
minimum=-30,
maximum=30,
step=1,
value=5,
label="Azimuth Angle (Phi)",
)
spherical_radius = gr.Slider(
minimum=0.5, maximum=1.5, step=0.1, value=1, label="Radius"
)
with gr.Group(visible=False) as group_move_rotation_translation:
gr.HTML(
"""<p style="padding: 10px">
<b>Rotation & Translation Mode</b> lets you directly define how the camera moves and rotates in the 3D space.
Use Rotation X/Y/Z to control the camera's orientation and Translation X/Y/Z to shift its position.
The anchor view serves as the starting point, with no initial rotation or translation applied.
</p>
"""
)
rotation_x = gr.Slider(
minimum=-20, maximum=20, step=1, value=0, label="Rotation X"
)
rotation_y = gr.Slider(
minimum=-20, maximum=20, step=1, value=0, label="Rotation Y"
)
rotation_z = gr.Slider(
minimum=-20, maximum=20, step=1, value=0, label="Rotation Z"
)
translation_x = gr.Slider(
minimum=-1, maximum=1, step=0.1, value=0, label="Translation X"
)
translation_y = gr.Slider(
minimum=-1, maximum=1, step=0.1, value=0, label="Translation Y"
)
translation_z = gr.Slider(
minimum=-1,
maximum=1,
step=0.1,
value=-0.2,
label="Translation Z",
)
input_camera_pose_format = gr.Radio(
choices=["W2C", "C2W"],
value="C2W",
label="Input Camera Pose Format",
visible=False,
)
model_camera_pose_format = gr.Radio(
choices=["W2C", "C2W"],
value="C2W",
label="Model Camera Pose Format",
visible=False,
)
def on_change_selected_camera_settings(_id):
return [gr.update(visible=_id == 0), gr.update(visible=_id == 1)]
camera_mode.change(
fn=on_change_selected_camera_settings,
inputs=camera_mode,
outputs=[group_spherical, group_move_rotation_translation],
)
with gr.Accordion("Advanced Sampling Settings"):
cfg_scale = gr.Slider(
value=3.0,
label="Classifier-Free Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
)
extra_cfg_scale = gr.Slider(
value=1.0,
label="Extra Classifier-Free Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
visible=False,
)
sample_steps = gr.Slider(
value=18, label="DDIM Sample Steps", minimum=0, maximum=25, step=1
)
trajectory_extension_factor = gr.Slider(
value=1,
label="Trajectory Extension (proportional to runtime)",
minimum=1,
maximum=3,
step=1,
)
random_seed = gr.Slider(
value=1024, minimum=1, maximum=9999, step=1, label="Random Seed"
)
def on_change_trajectory_extension_factor(_val):
if _val == 1:
return [
gr.update(minimum=-30, maximum=30),
gr.update(minimum=-30, maximum=30),
gr.update(minimum=0.5, maximum=1.5),
gr.update(minimum=-20, maximum=20),
gr.update(minimum=-20, maximum=20),
gr.update(minimum=-20, maximum=20),
gr.update(minimum=-1, maximum=1),
gr.update(minimum=-1, maximum=1),
gr.update(minimum=-1, maximum=1),
]
elif _val == 2:
return [
gr.update(minimum=-15, maximum=15),
gr.update(minimum=-15, maximum=15),
gr.update(minimum=0.5, maximum=1.5),
gr.update(minimum=-10, maximum=10),
gr.update(minimum=-10, maximum=10),
gr.update(minimum=-10, maximum=10),
gr.update(minimum=-0.5, maximum=0.5),
gr.update(minimum=-0.5, maximum=0.5),
gr.update(minimum=-0.5, maximum=0.5),
]
elif _val == 3:
return [
gr.update(minimum=-10, maximum=10),
gr.update(minimum=-10, maximum=10),
gr.update(minimum=0.5, maximum=1.5),
gr.update(minimum=-6, maximum=6),
gr.update(minimum=-6, maximum=6),
gr.update(minimum=-6, maximum=6),
gr.update(minimum=-0.3, maximum=0.3),
gr.update(minimum=-0.3, maximum=0.3),
gr.update(minimum=-0.3, maximum=0.3),
]
trajectory_extension_factor.change(
fn=on_change_trajectory_extension_factor,
inputs=trajectory_extension_factor,
outputs=[
spherical_angle_x,
spherical_angle_y,
spherical_radius,
rotation_x,
rotation_y,
rotation_z,
translation_x,
translation_y,
translation_z,
],
)
with gr.Column(scale=1):
with gr.Accordion("Input Image(s)", open=True):
num_images_slider = gr.Slider(
minimum=1,
maximum=4,
step=1,
value=1,
label="Number of Input Image(s)",
)
condition_image_1 = gr.Image(label="Input Image 1 (Anchor View)")
condition_image_2 = gr.Image(label="Input Image 2", visible=False)
condition_image_3 = gr.Image(label="Input Image 3", visible=False)
condition_image_4 = gr.Image(label="Input Image 4", visible=False)
with gr.Column(scale=1):
with gr.Accordion("Output Video", open=True):
output_video = gr.Video(label="Output Video")
run_btn = gr.Button("Generate")
with gr.Accordion("Notes", open=True):
gr.HTML(
"""
<p style="font-size: 1.1em; line-height: 1.6; color: #555;">
π§ <b>Reminder</b>:
As a generative model, NVComposer may occasionally produce unexpected outputs.
Try adjusting the random seed, sampling steps, or CFG scales to explore different results.
<br>
π€ <b>Longer Generation</b>:
If you need longer video, you can increase the trajectory extension value in the advanced sampling settings and run with your own GPU.
This extends the defined camera trajectory by repeating it, allowing for a longer output.
This also requires using smaller rotation or translation scales to maintain smooth transitions and will increase the generation time. <br>
π€ <b>Limitation</b>:
This is the initial beta version of NVComposer.
Its generalizability may be limited in certain scenarios, and artifacts can appear with large camera motions due to the current foundation model's constraints.
Weβre actively working on an improved version with enhanced datasets and a more powerful foundation model,
and we are looking for <b>collaboration opportunities from the community</b>. <br>
β¨ We welcome your feedback and questions. Thank you! </p>
"""
)
with gr.Row():
gr.Examples(
label="Quick Examples",
examples=EXAMPLES,
inputs=[
condition_image_1,
condition_image_2,
camera_mode,
spherical_angle_x,
spherical_angle_y,
spherical_radius,
rotation_x,
rotation_y,
rotation_z,
translation_x,
translation_y,
translation_z,
cfg_scale,
extra_cfg_scale,
sample_steps,
output_video,
num_images_slider,
],
examples_per_page=5,
cache_examples=False,
)
# Update visibility of condition images based on the slider
def update_visible_images(num_images):
return [
gr.update(visible=num_images >= 2),
gr.update(visible=num_images >= 3),
gr.update(visible=num_images >= 4),
]
# Trigger visibility update when the slider value changes
num_images_slider.change(
fn=update_visible_images,
inputs=num_images_slider,
outputs=[condition_image_2, condition_image_3, condition_image_4],
)
run_btn.click(
fn=run_inference,
inputs=[
camera_mode,
condition_image_1,
condition_image_2,
condition_image_3,
condition_image_4,
input_camera_pose_format,
model_camera_pose_format,
rotation_x,
rotation_y,
rotation_z,
translation_x,
translation_y,
translation_z,
trajectory_extension_factor,
cfg_scale,
extra_cfg_scale,
sample_steps,
num_images_slider,
spherical_angle_x,
spherical_angle_y,
spherical_radius,
random_seed,
],
outputs=output_video,
)
demo.launch()
|