Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,64 +1,54 @@ | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
            -
            from  | 
| 3 | 
            -
             | 
| 4 | 
            -
             | 
| 5 | 
            -
             | 
| 6 | 
            -
             | 
| 7 | 
            -
             | 
| 8 | 
            -
             | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
             | 
| 12 | 
            -
             | 
| 13 | 
            -
             | 
| 14 | 
            -
             | 
| 15 | 
            -
             | 
| 16 | 
            -
             | 
| 17 | 
            -
             | 
| 18 | 
            -
                 | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
                 | 
| 27 | 
            -
             | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
            -
                for message in client.chat_completion(
         | 
| 31 | 
            -
                    messages,
         | 
| 32 | 
            -
                    max_tokens=max_tokens,
         | 
| 33 | 
            -
                    stream=True,
         | 
| 34 | 
             
                    temperature=temperature,
         | 
| 35 | 
             
                    top_p=top_p,
         | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 |  | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
|  | |
| 41 |  | 
| 42 |  | 
| 43 | 
            -
             | 
| 44 | 
            -
            For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
         | 
| 45 | 
            -
            """
         | 
| 46 | 
             
            demo = gr.ChatInterface(
         | 
| 47 | 
             
                respond,
         | 
| 48 | 
             
                additional_inputs=[
         | 
| 49 | 
             
                    gr.Textbox(value="You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.", label="System message"),
         | 
| 50 | 
             
                    gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
         | 
| 51 | 
             
                    gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
         | 
| 52 | 
            -
                    gr.Slider(
         | 
| 53 | 
            -
                        minimum=0.1,
         | 
| 54 | 
            -
                        maximum=1.0,
         | 
| 55 | 
            -
                        value=0.95,
         | 
| 56 | 
            -
                        step=0.05,
         | 
| 57 | 
            -
                        label="Top-p (nucleus sampling)",
         | 
| 58 | 
            -
                    ),
         | 
| 59 | 
             
                ],
         | 
| 60 | 
             
            )
         | 
| 61 |  | 
| 62 | 
            -
             | 
| 63 | 
             
            if __name__ == "__main__":
         | 
| 64 | 
             
                demo.launch()
         | 
|  | 
|  | |
| 1 | 
             
            import gradio as gr
         | 
| 2 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Load the model and tokenizer locally
         | 
| 5 | 
            +
            model_name = "kz919/QwQ-0.5B-Distilled-SFT"
         | 
| 6 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 7 | 
            +
            model = AutoModelForCausalLM.from_pretrained(model_name)
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # Ensure the model runs on GPU if available
         | 
| 10 | 
            +
            import torch
         | 
| 11 | 
            +
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
         | 
| 12 | 
            +
            model.to(device)
         | 
| 13 | 
            +
             | 
| 14 | 
            +
             | 
| 15 | 
            +
            # Define the function to handle chat responses
         | 
| 16 | 
            +
            def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
         | 
| 17 | 
            +
                # Prepare the prompt by combining history and system messages
         | 
| 18 | 
            +
                prompt = system_message + "\n"
         | 
| 19 | 
            +
                for user_input, assistant_response in history:
         | 
| 20 | 
            +
                    prompt += f"User: {user_input}\nAssistant: {assistant_response}\n"
         | 
| 21 | 
            +
                prompt += f"User: {message}\nAssistant:"
         | 
| 22 | 
            +
             | 
| 23 | 
            +
                # Tokenize the input prompt
         | 
| 24 | 
            +
                inputs = tokenizer(prompt, return_tensors="pt").to(device)
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                # Generate a response
         | 
| 27 | 
            +
                outputs = model.generate(
         | 
| 28 | 
            +
                    inputs.input_ids,
         | 
| 29 | 
            +
                    max_length=max_tokens,
         | 
|  | |
|  | |
|  | |
|  | |
| 30 | 
             
                    temperature=temperature,
         | 
| 31 | 
             
                    top_p=top_p,
         | 
| 32 | 
            +
                    pad_token_id=tokenizer.eos_token_id,
         | 
| 33 | 
            +
                )
         | 
| 34 |  | 
| 35 | 
            +
                # Decode the generated tokens and yield the response
         | 
| 36 | 
            +
                response = tokenizer.decode(outputs[0], skip_special_tokens=True)
         | 
| 37 | 
            +
                yield response.split("Assistant:")[-1].strip()
         | 
| 38 |  | 
| 39 |  | 
| 40 | 
            +
            # Create the Gradio interface
         | 
|  | |
|  | |
| 41 | 
             
            demo = gr.ChatInterface(
         | 
| 42 | 
             
                respond,
         | 
| 43 | 
             
                additional_inputs=[
         | 
| 44 | 
             
                    gr.Textbox(value="You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.", label="System message"),
         | 
| 45 | 
             
                    gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
         | 
| 46 | 
             
                    gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
         | 
| 47 | 
            +
                    gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 48 | 
             
                ],
         | 
| 49 | 
             
            )
         | 
| 50 |  | 
| 51 | 
            +
            # Launch the Gradio app
         | 
| 52 | 
             
            if __name__ == "__main__":
         | 
| 53 | 
             
                demo.launch()
         | 
| 54 | 
            +
             |