Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,54 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
|
43 |
-
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
gr.Textbox(value="You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.", label="System message"),
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the model and tokenizer locally
|
5 |
+
model_name = "kz919/QwQ-0.5B-Distilled-SFT"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Ensure the model runs on GPU if available
|
10 |
+
import torch
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model.to(device)
|
13 |
+
|
14 |
+
|
15 |
+
# Define the function to handle chat responses
|
16 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
17 |
+
# Prepare the prompt by combining history and system messages
|
18 |
+
prompt = system_message + "\n"
|
19 |
+
for user_input, assistant_response in history:
|
20 |
+
prompt += f"User: {user_input}\nAssistant: {assistant_response}\n"
|
21 |
+
prompt += f"User: {message}\nAssistant:"
|
22 |
+
|
23 |
+
# Tokenize the input prompt
|
24 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
25 |
+
|
26 |
+
# Generate a response
|
27 |
+
outputs = model.generate(
|
28 |
+
inputs.input_ids,
|
29 |
+
max_length=max_tokens,
|
|
|
|
|
|
|
|
|
30 |
temperature=temperature,
|
31 |
top_p=top_p,
|
32 |
+
pad_token_id=tokenizer.eos_token_id,
|
33 |
+
)
|
34 |
|
35 |
+
# Decode the generated tokens and yield the response
|
36 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
+
yield response.split("Assistant:")[-1].strip()
|
38 |
|
39 |
|
40 |
+
# Create the Gradio interface
|
|
|
|
|
41 |
demo = gr.ChatInterface(
|
42 |
respond,
|
43 |
additional_inputs=[
|
44 |
gr.Textbox(value="You are a helpful and harmless assistant. You are Qwen developed by Alibaba. You should think step-by-step.", label="System message"),
|
45 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
46 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
47 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
],
|
49 |
)
|
50 |
|
51 |
+
# Launch the Gradio app
|
52 |
if __name__ == "__main__":
|
53 |
demo.launch()
|
54 |
+
|