File size: 12,898 Bytes
99822a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b52a8ce
 
99822a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2862d61
99822a8
 
c840dbf
99822a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c840dbf
 
99822a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import time
import json
import psycopg2
from typing import Dict, List
# from dotenv import load_dotenv

# FastAPI ๋ฐ slowapi ๊ด€๋ จ ๋ชจ๋“ˆ
from fastapi import FastAPI, Request
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
from fastapi.middleware.cors import CORSMiddleware

# Pydantic ๋ชจ๋ธ
from pydantic import BaseModel

# LangChain ๊ด€๋ จ ๋ชจ๋“ˆ
from langchain_google_genai import ChatGoogleGenerativeAI
# from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import PGVector
from langchain_core.messages import SystemMessage
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_core.documents import Document # Document ํƒ€์ž… ํžŒํŠธ์šฉ์œผ๋กœ ์ถ”๊ฐ€
# from pdf_importer import create_vector_store, CONNECTION_STRING, COLLECTION_NAME

# ํ™˜๊ฒฝ ๋ณ€์ˆ˜ ๋กœ๋“œ (Hugging Face Secrets์—์„œ ๊ฐ€์ ธ์˜ด)
POSTGRES_USER = os.getenv('POSTGRES_USER')
POSTGRES_PASSWORD = os.getenv('POSTGRES_PASSWORD')
POSTGRES_HOST = os.getenv('POSTGRES_HOST')
POSTGRES_PORT = os.getenv('POSTGRES_PORT')
POSTGRES_DB = os.getenv('POSTGRES_DB')
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')

COLLECTION_NAME = "homepage_pdfplumner_1st"
SENTENCE_TRANSFORMERS_HOME = os.getenv('SENTENCE_TRANSFORMERS_HOME', '/app/.cache')

# 2. ํ•„์ˆ˜ ํ™˜๊ฒฝ ๋ณ€์ˆ˜๊ฐ€ ๋ชจ๋‘ ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธํ•ฉ๋‹ˆ๋‹ค.
if not all([POSTGRES_USER, POSTGRES_PASSWORD, POSTGRES_HOST, POSTGRES_PORT, POSTGRES_DB, GOOGLE_API_KEY, SENTENCE_TRANSFORMERS_HOME]):
    raise ValueError("ํ•„์ˆ˜ ํ™˜๊ฒฝ ๋ณ€์ˆ˜๋“ค์ด ์„ค์ •๋˜์ง€ ์•Š์•˜์Šต๋‹ˆ๋‹ค. Hugging Face Secrets๋ฅผ ํ™•์ธํ•˜์„ธ์š”.")

# ํ™˜๊ฒฝ ๋ณ€์ˆ˜๋ฅผ ์กฐํ•ฉํ•˜์—ฌ CONNECTION_STRING์„ ์ƒ์„ฑ
CONNECTION_STRING = f"postgresql+psycopg2://{POSTGRES_USER}:{POSTGRES_PASSWORD}@{POSTGRES_HOST}:{POSTGRES_PORT}/{POSTGRES_DB}"


# load_dotenv()
app = FastAPI()
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


# RAG ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ํ”„๋กœ๊ทธ๋žจ ์‹œ์ž‘ ์‹œ ํ•œ ๋ฒˆ๋งŒ ์ดˆ๊ธฐํ™”
embeddings = HuggingFaceEmbeddings(
    model_name='nlpai-lab/KURE-v1',
    model_kwargs={'device': 'cpu'},
    cache_folder=SENTENCE_TRANSFORMERS_HOME
)

try:
    vector_store = PGVector(
        collection_name=COLLECTION_NAME,
        connection_string=CONNECTION_STRING,
        embedding_function=embeddings
    )
    print("Vector store loaded from PostgreSQL.")
except Exception as e:
    print(f"Error connecting to PostgreSQL: {e}")
    import sys
    sys.exit(1)

llm = ChatGoogleGenerativeAI(
    # model="gemini-1.5-flash-8b",
    model="gemini-2.5-flash-lite",
    model_kwargs={
        "system_instruction": SystemMessage(
            content=
            # """๋‹น์‹ ์€ ํ•œ๊ตญ์™ธ๊ตญ์–ด๋Œ€ํ•™๊ต(์„œ์šธ) ํ•™์‚ฌ ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค. ๋‹ต๋ณ€ ์›์น™: 1. ํ•œ๊ตญ์™ธ๊ตญ์–ด๋Œ€ํ•™๊ต(์„œ์šธ) ๊ด€๋ จ ์งˆ๋ฌธ์— ์ •ํ™•ํžˆ ๋‹ต๋ณ€ํ•ฉ๋‹ˆ๋‹ค. 2. ์ด์ „ ๋Œ€ํ™” ๋งฅ๋ฝ์„ ๊ธฐ์–ตํ•˜๊ณ  ์œ ์—ฐํ•˜๊ฒŒ ์‘๋‹ตํ•ฉ๋‹ˆ๋‹ค. 3. ์นœ์ ˆํ•˜๊ณ  ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์šด ๋งํˆฌ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, ๋ฐ˜๋“œ์‹œ ์™„์ „ํ•œ ๋ฌธ์žฅ์œผ๋กœ ๋‹ต๋ณ€ํ•ฉ๋‹ˆ๋‹ค. 4. ์ฐธ๊ณ  ์ •๋ณด์— ์—†๋Š” ๋‚ด์šฉ์€ ์ ˆ๋Œ€ ์ถ”์ธกํ•˜๊ฑฐ๋‚˜ ์ž„์˜๋กœ ๋‹ต๋ณ€ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. ๋‹ต๋ณ€ ๊ทœ์น™: - ํ•œ๊ตญ์™ธ๊ตญ์–ด๋Œ€ํ•™๊ต(์„œ์šธ)๊ณผ ๊ด€๋ จ ์—†๋Š” ์งˆ๋ฌธ: "์ฃ„์†กํ•ฉ๋‹ˆ๋‹ค. ํ•œ๊ตญ์™ธ๊ตญ์–ด๋Œ€ํ•™๊ต(์„œ์šธ) ๊ด€๋ จ ์งˆ๋ฌธ์—๋งŒ ๋‹ต๋ณ€๋“œ๋ฆด ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค."๋ผ๊ณ  ๋‹ต๋ณ€ํ•˜์„ธ์š”. - ์‚ฌ์šฉ์ž์˜ ์งˆ๋ฌธ๊ณผ ๊ด€๋ จ๋œ ์ •๋ณด๊ฐ€ ์ฐธ๊ณ  ๋ฌธ์„œ์— ๋ช…ํ™•ํ•˜๊ฒŒ ์กด์žฌํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ, ์–ด๋–ค ๋‚ด์šฉ๋„ ์ถ”๋ก ํ•˜๊ฑฐ๋‚˜ ๋ง๋ถ™์ด์ง€ ๋ง๊ณ  ๋ฌด์กฐ๊ฑด "์ฃ„์†กํ•ฉ๋‹ˆ๋‹ค. ํ•ด๋‹น ์ •๋ณด๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค."๋ผ๊ณ  ๋‹ต๋ณ€ํ•˜์„ธ์š”."""
            """

๋‹น์‹ ์€ ํ•œ๊ตญ์™ธ๊ตญ์–ด๋Œ€ํ•™๊ต(์„œ์šธ)์˜ **'ํ•™์‚ฌ ์ƒํ™œ AI ์–ด๋“œ๋ฐ”์ด์ €'**์ž…๋‹ˆ๋‹ค. ๋‹น์‹ ์˜ ์ง€์‹์€ ์ฃผ์–ด์ง„ [ํ•™์‚ฌ ๊ทœ์ •]๊ณผ [์ฃผ๋ณ€ ์ƒ๊ถŒ ์ •๋ณด] ๋ฌธ์„œ๋กœ ํ•œ์ •๋ฉ๋‹ˆ๋‹ค. ๋‹น์‹ ์˜ ์ž„๋ฌด๋Š” ์ด ์ง€์‹ ๋‚ด์—์„œ ํ•™์ƒ๋“ค์˜ ์งˆ๋ฌธ์— ๋ช…ํ™•ํ•˜๊ณ  ์นœ์ ˆํ•œ ์ „๋ฌธ๊ฐ€์˜ ์–ด์กฐ๋กœ ๋‹ต๋ณ€ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

[๋‹ต๋ณ€ ์›์น™]

1. ์ •ํ™•์„ฑ: ๋ฐ˜๋“œ์‹œ ์ฃผ์–ด์ง„ ์ฐธ๊ณ  ๋ฌธ์„œ์˜ ๋‚ด์šฉ์—๋งŒ ๊ทผ๊ฑฐํ•˜์—ฌ ๋‹ต๋ณ€ํ•ฉ๋‹ˆ๋‹ค.

2. ์นœ์ ˆํ•จ: ํ•ญ์ƒ ์นœ์ ˆํ•˜๊ณ  ์ดํ•ดํ•˜๊ธฐ ์‰ฌ์šด ์™„์ „ํ•œ ๋ฌธ์žฅ์œผ๋กœ ๋‹ต๋ณ€ํ•ฉ๋‹ˆ๋‹ค.

3. ๋งฅ๋ฝ ์ดํ•ด: ์ด์ „ ๋Œ€ํ™” ๋‚ด์šฉ์„ ๊ธฐ์–ตํ•˜์—ฌ ์ž์—ฐ์Šค๋Ÿฌ์šด ๋Œ€ํ™”๋ฅผ ์ด์–ด๊ฐ‘๋‹ˆ๋‹ค.

4. ์ง€์‹ ๋‚ด์žฌํ™”: ๋‹น์‹ ์€ ๋ฌธ์„œ๋ฅผ ๋‹จ์ˆœํžˆ ์ „๋‹ฌํ•˜๋Š” ๋กœ๋ด‡์ด ์•„๋‹™๋‹ˆ๋‹ค. ์ฃผ์–ด์ง„ ์ฐธ๊ณ  ๋ฌธ์„œ๋Š” ๋‹น์‹ ์˜ '์ง€์‹'์ž…๋‹ˆ๋‹ค. ๋‹ต๋ณ€ ์‹œ, '์ œ๊ณต๋œ ์ •๋ณด', '์ฐธ๊ณ  ๋ฌธ์„œ', '์ฃผ์–ด์ง„ ํ…์ŠคํŠธ', 'ํ‘œ', '๋ฌธ๋‹จ' ๋“ฑ ๋‹น์‹ ์ด ์ •๋ณด๋ฅผ ์–ด๋–ป๊ฒŒ ์–ป์—ˆ๋Š”์ง€ ์•”์‹œํ•˜๋Š” ๊ทธ ์–ด๋–ค ๋‹จ์–ด๋„ ์ ˆ๋Œ€ ์‚ฌ์šฉํ•˜์ง€ ๋งˆ์„ธ์š”. ๊ฒ€์ƒ‰๋œ ๋ชจ๋“  ์ •๋ณด๋ฅผ ์™„์ „ํžˆ ์ž์‹ ์˜ ์ง€์‹์ธ ๊ฒƒ์ฒ˜๋Ÿผ ์ข…ํ•ฉํ•˜๊ณ  ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์žฌ๊ตฌ์„ฑํ•˜์—ฌ, ๋งˆ์น˜ ์›๋ž˜๋ถ€ํ„ฐ ์•Œ๊ณ  ์žˆ์—ˆ๋˜ ๊ฒƒ์ฒ˜๋Ÿผ ์‚ฌ์šฉ์ž์—๊ฒŒ ์ง์ ‘ ์„ค๋ช…ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

5. ํ•œ๊ตญ์–ด ์‚ฌ์šฉ: ๋ชจ๋“  ๋‹ต๋ณ€์€ ๋ฐ˜๋“œ์‹œ ์™„๋ฒฝํ•œ ํ•œ๊ตญ์–ด๋กœ๋งŒ ์ƒ์„ฑํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

[๋‹ต๋ณ€ ๊ทœ์น™]

1. ์ž๊ธฐ์†Œ๊ฐœ: ๋งŒ์•ฝ ์‚ฌ์šฉ์ž๊ฐ€ ๋‹น์‹ ์˜ ์ •์ฒด์„ฑ์— ๋Œ€ํ•ด ๋ฌป๋Š”๋‹ค๋ฉด(์˜ˆ: "๋„ˆ๋Š” ๋ˆ„๊ตฌ์•ผ?", "์ด๋ฆ„์ด ๋ญ์•ผ?"), "์•ˆ๋…•ํ•˜์„ธ์š”! ์ €๋Š” ํ•œ๊ตญ์™ธ๊ตญ์–ด๋Œ€ํ•™๊ต ํ•™์ƒ๋“ค์˜ ์บ ํผ์Šค ์ƒํ™œ์„ ๋•๊ธฐ ์œ„ํ•ด ๋งŒ๋“ค์–ด์ง„ 'ํ•™์‚ฌ ์ƒํ™œ AI ์–ด๋“œ๋ฐ”์ด์ €'์ž…๋‹ˆ๋‹ค. ํ•™์‚ฌ ์ •๋ณด๋‚˜ ํ•™๊ต ์ƒํ™œ์— ๋Œ€ํ•ด ๊ถ๊ธˆํ•œ ์ ์ด ์žˆ๋‹ค๋ฉด ๋ฌด์—‡์ด๋“  ๋ฌผ์–ด๋ณด์„ธ์š”." ๋ผ๊ณ  ์ •ํ™•ํžˆ ์†Œ๊ฐœํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ์ ˆ๋Œ€๋กœ 'Google์˜ ์–ธ์–ด ๋ชจ๋ธ'์ด๋‚˜ ๋งˆ์Šค์ฝ”ํŠธ '๋ถ€(Boo)'๋ผ๊ณ  ์ž์‹ ์„ ์†Œ๊ฐœํ•ด์„œ๋Š” ์•ˆ ๋ฉ๋‹ˆ๋‹ค.

1. ๋ฒ”์œ„ ์™ธ ์งˆ๋ฌธ ํŒ๋‹จ: ๋‹น์‹ ์˜ ์ง€์‹ ๋ฒ”์œ„(ํ•™์‚ฌ, ์ฃผ๋ณ€ ๋ง›์ง‘)์™€ ๋ช…๋ฐฑํžˆ ๊ด€๋ จ ์—†๋Š” ์งˆ๋ฌธ(์˜ˆ: ๊ธˆ์œต, ์Šคํฌ์ธ )์—๋Š” "์ฃ„์†กํ•ฉ๋‹ˆ๋‹ค. ์ €๋Š” ํ•œ๊ตญ์™ธ๊ตญ์–ด๋Œ€ํ•™๊ต ํ•™์‚ฌ ๋ฐ ์บ ํผ์Šค ์ƒํ™œ ์ •๋ณด์— ๋Œ€ํ•ด์„œ๋งŒ ๋‹ต๋ณ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค." ๋ผ๊ณ  ๋‹ต๋ณ€ํ•˜์„ธ์š”. '์ œ๊ณต๋œ ์ •๋ณด์— ์—†๋‹ค'๋Š” ์‹์˜ ๋ถ€์—ฐ ์„ค๋ช…์€ ์ ˆ๋Œ€ ๋ง๋ถ™์ด์ง€ ๋งˆ์„ธ์š”.

2. ์ •๋ณด ์šฐ์„ ์ˆœ์œ„ ํŒ๋ณ„: ์—ฌ๋Ÿฌ ๊ฐœ์˜ ์ฐธ๊ณ  ๋ฌธ์„œ๊ฐ€ ์ฃผ์–ด์ง€๋ฉด, ๊ทธ์ค‘์—์„œ ์‚ฌ์šฉ์ž์˜ ์งˆ๋ฌธ์— ๊ฐ€์žฅ ์ง์ ‘์ ์œผ๋กœ ๋‹ตํ•  ์ˆ˜ ์žˆ๋Š” ํ•ต์‹ฌ ์ •๋ณด๋ฅผ ๋จผ์ € ์‹๋ณ„ํ•˜์„ธ์š”. ๊ด€๋ จ์„ฑ์ด ๋–จ์–ด์ง€๊ฑฐ๋‚˜ ๋ถ€์ฐจ์ ์ธ ์ •๋ณด๋Š” ๋‹ต๋ณ€์— ํฌํ•จํ•˜์ง€ ์•Š๊ฑฐ๋‚˜, ๊ผญ ํ•„์š”ํ•œ ๊ฒฝ์šฐ์—๋งŒ ๊ฐ„๋žตํ•˜๊ฒŒ ๋ง๋ถ™์—ฌ ์„ค๋ช…ํ•˜์„ธ์š”.

3. ํ‘œ(Table) ๋ถ„์„: ์ฐธ๊ณ  ๋ฌธ์„œ์— ํ‘œ๊ฐ€ ํฌํ•จ๋œ ๊ฒฝ์šฐ, ๋‹น์‹ ์€ ํ‘œ ๋ถ„์„ ์ „๋ฌธ๊ฐ€๋กœ์„œ ํ–‰๊ณผ ์—ด์˜ ๊ด€๊ณ„๋ฅผ ์ •ํ™•ํžˆ ํ•ด์„ํ•˜์—ฌ ๋‹ต๋ณ€ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

4. ์กฐ๊ฑด๋ถ€ ๋‹ต๋ณ€: ๋งŒ์•ฝ ํ‘œ๋‚˜ ํ…์ŠคํŠธ์— ํ•™๊ณผ, ํ•™๋ฒˆ ๋“ฑ ์„ธ๋ถ€ ์กฐ๊ฑด์ด ๋ช…์‹œ๋˜์–ด ์žˆ์ง€ ์•Š๋‹ค๋ฉด, "์ œ์‹œ๋œ ์ž๋ฃŒ์— ๋”ฐ๋ฅด๋ฉด ์ผ๋ฐ˜์ ์œผ๋กœ" ๋˜๋Š” "2025ํ•™๋…„๋„ ๊ธฐ์ค€์œผ๋กœ๋Š”" ๊ณผ ๊ฐ™์ด ์ •๋ณด์˜ ์ถœ์ฒ˜๋‚˜ ๊ธฐ์ค€์„ ๋ช…ํ™•ํžˆ ๋ฐํžˆ๋ฉฐ ๋‹ต๋ณ€ํ•˜์„ธ์š”.

5. ๋‹ค์ค‘ ์ •๋ณด ์ฒ˜๋ฆฌ: ๋งŒ์•ฝ ์‚ฌ์šฉ์ž์˜ ์งˆ๋ฌธ์— ๋Œ€ํ•ด ์—ฌ๋Ÿฌ ๋ฌธ์„œ์—์„œ ์„œ๋กœ ๋‹ค๋ฅธ ์ •๋ณด๊ฐ€ ๊ฒ€์ƒ‰๋  ๊ฒฝ์šฐ, ํ•˜๋‚˜์˜ ์ •๋ณด๋งŒ ์„ ํƒํ•˜์ง€ ๋งˆ์„ธ์š”. ๋Œ€์‹ , ๊ฐ๊ฐ์˜ ์กฐ๊ฑด๊ณผ ๋‚ด์šฉ์„ ๋ช…ํ™•ํžˆ ๊ตฌ๋ถ„ํ•˜์—ฌ ๋ชจ๋“  ์ •๋ณด๋ฅผ ์ข…ํ•ฉ์ ์œผ๋กœ ์•ˆ๋‚ดํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.

6. ์˜ˆ์™ธ ๊ฐ€๋Šฅ์„ฑ ์ธ์ง€: ํ•™์‚ฌ ๊ทœ์ •์€ ๋‹จ๊ณผ๋Œ€ํ•™, ํ•™๊ณผ, ํ•™๋ฒˆ๋ณ„๋กœ ์˜ˆ์™ธ ๊ทœ์น™์ด ์กด์žฌํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์‚ฌ์‹ค์„ ํ•ญ์ƒ ์ธ์ง€ํ•˜์„ธ์š”. ๋งŒ์•ฝ ์ผ๋ฐ˜์ ์ธ ๊ทœ์น™์„ ์ฐพ์•˜๋”๋ผ๋„, "์ผ๋ฐ˜์ ์œผ๋กœ๋Š” OOํ•™์ ์ด ํ•„์š”ํ•˜์ง€๋งŒ, ์†Œ์† ๋‹จ๊ณผ๋Œ€ํ•™์ด๋‚˜ ํ•™๊ณผ์— ๋”ฐ๋ผ ๋‹ค๋ฅผ ์ˆ˜ ์žˆ์œผ๋‹ˆ ์ •ํ™•ํ•œ ์ •๋ณด๋Š” ํ•™๊ต ๊ณต์‹ ๋ฌธ์„œ๋ฅผ ํ™•์ธํ•˜์‹œ๊ฑฐ๋‚˜ ํ•™๊ณผ ์‚ฌ๋ฌด์‹ค์— ๋ฌธ์˜ํ•˜๋Š” ๊ฒƒ์„ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค" ์™€ ๊ฐ™์ด ๋‹ต๋ณ€์— '์ฃผ์˜์‚ฌํ•ญ'๊ณผ 'ํ•œ๊ณ„'๋ฅผ ๋ช…์‹œํ•˜์„ธ์š”.

7. ์ •๋ณด ๋ถ€์žฌ ์‹œ: ์œ„์˜ ๋ชจ๋“  ๋…ธ๋ ฅ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์งˆ๋ฌธ์— ๋Œ€ํ•œ ๋‹ต๋ณ€์„ ์ฐธ๊ณ  ๋ฌธ์„œ์—์„œ ์ฐพ์„ ์ˆ˜ ์—†๋Š” ๊ฒฝ์šฐ์—๋งŒ, "์ฃ„์†กํ•ฉ๋‹ˆ๋‹ค. ๋ฌธ์˜ํ•˜์‹  ๋‚ด์šฉ์— ๋Œ€ํ•œ ์ •๋ณด๋Š” ์ œ๊ฐ€ ๊ฐ€์ง„ ์ž๋ฃŒ์—์„œ ํ™•์ธํ•  ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค."๋ผ๊ณ  ๋‹ต๋ณ€ํ•˜์„ธ์š”.

            """

            
            ),
    }
)

retriever = vector_store.as_retriever(search_kwargs={"k": 3})

# retriever = MultiQueryRetriever.from_llm(
#     retriever=vector_store.as_retriever(search_kwargs={"k": 5}),
#     llm=llm
# )

# ์‚ฌ์šฉ์ž ์„ธ์…˜๋ณ„ ๋Œ€ํ™” ์ฒด์ธ์„ ์ €์žฅํ•  ๋”•์…”๋„ˆ๋ฆฌ
chat_sessions: Dict[str, ConversationalRetrievalChain] = {}

def get_or_create_chain(session_id: str) -> ConversationalRetrievalChain:
    if session_id not in chat_sessions:
        memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True,
    input_key="question", # <-- ์ถ”๊ฐ€
    output_key="answer" )
        new_chain = ConversationalRetrievalChain.from_llm(
            llm=llm,
            retriever=retriever,
            memory=memory,
            return_source_documents=True, # ์ฐธ๊ณ  ๋ฌธ์„œ ๋ฐ˜ํ™˜ ํ™œ์„ฑํ™”
            output_key="answer"
        )
        chat_sessions[session_id] = new_chain
        print(f"์ƒˆ๋กœ์šด ์„ธ์…˜ ID ์ƒ์„ฑ: {session_id}")
    return chat_sessions[session_id]


class ChatMessage(BaseModel):
    message: str
    session_id: str
    user_id: str # ์‚ฌ์šฉ์ž ์‹๋ณ„์„ ์œ„ํ•ด ์ถ”๊ฐ€

class ChatResponse(BaseModel):
    response: str
    success: bool
    # source_documents ํ•„๋“œ๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ ํ”„๋ก ํŠธ์—”๋“œ๋กœ๋„ ๋ณด๋‚ผ ์ˆ˜ ์žˆ๋„๋ก ์ค€๋น„
    source_documents: List[Dict[str, str]] = [] # ๋ฌธ์„œ ๋‚ด์šฉ๊ณผ ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ €์žฅ





@app.post("/api/chat", response_model=ChatResponse)
@limiter.limit("15/minute")
async def chat_with_gemini(request: Request):
    start_time = time.time()

    try:

        # JSON body๋ฅผ ์ง์ ‘ ํŒŒ์‹ฑ
        body = await request.json()
        chat_message = ChatMessage(**body)

        # qa_chain = get_or_create_chain(request.session_id)
        # result = qa_chain.invoke({"question": request.message})
        qa_chain = get_or_create_chain(chat_message.session_id)
        result = qa_chain.invoke({"question": chat_message.message})


        # ์ฐธ๊ณ  ๋ฌธ์„œ ์ถ”์ถœ ๋ฐ ๋กœ๊ทธ ์ถœ๋ ฅ
        source_documents_for_response: List[Dict[str, str]] = []
        if 'source_documents' in result and result['source_documents']:
            print("\n--- ์ฐธ๊ณ  ๋ฌธ์„œ ---")
            for i, doc in enumerate(result['source_documents']):
                print(f"๋ฌธ์„œ {i+1}:")
                print(f"  ์†Œ์Šค: {doc.metadata.get('source', '์•Œ ์ˆ˜ ์—†์Œ')}")
                print(f"  ๋‚ด์šฉ (์ผ๋ถ€): {doc.page_content[:200]}...") # ๋‚ด์šฉ์˜ ์ผ๋ถ€๋งŒ ์ถœ๋ ฅ
                # ํ”„๋ก ํŠธ์—”๋“œ ์‘๋‹ต์„ ์œ„ํ•ด ์ €์žฅ
                source_documents_for_response.append({
                    "source": doc.metadata.get('source', '์•Œ ์ˆ˜ ์—†์Œ'),
                    "content": doc.page_content # ์ „์ฒด ๋‚ด์šฉ์„ ๋ณด๋‚ผ ์ˆ˜๋„ ์žˆ์Œ
                })
            print("---------------\n")
        # ==========================================================
        # โ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผ ์ด ๋ถ€๋ถ„๋งŒ ์ถ”๊ฐ€ โ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผโ–ผ
        # ==========================================================
        
        response_time_ms = int((time.time() - start_time) * 1000)

        # DB์— ๋กœ๊ทธ ์ €์žฅ
        try:
            db_conn_str = CONNECTION_STRING.replace("postgresql+psycopg2", "postgresql")
            conn = psycopg2.connect(db_conn_str)
            cur = conn.cursor()
            cur.execute(
                """
                INSERT INTO chat_logs (session_id, user_id, user_question, bot_answer, retrieved_sources, response_time_ms)
                VALUES (%s, %s, %s, %s, %s, %s);
                """,
                (chat_message.session_id, chat_message.user_id, chat_message.message, result['answer'], json.dumps(source_documents_for_response), response_time_ms)
            )
            conn.commit()
            cur.close()
            conn.close()
        except Exception as db_error:
            print(f"DB ๋กœ๊ทธ ์ €์žฅ ์‹คํŒจ: {db_error}")

        # ==========================================================
        # โ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒ ์ด ๋ถ€๋ถ„๋งŒ ์ถ”๊ฐ€ โ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒโ–ฒ
        # ==========================================================


        

        return ChatResponse(
            response=result['answer'],
            success=True,
            source_documents=source_documents_for_response # ์‘๋‹ต์— ์ฐธ๊ณ  ๋ฌธ์„œ ์ถ”๊ฐ€
        )
    except Exception as e:
        print(f"์˜ค๋ฅ˜ ๋ฐœ์ƒ: {str(e)}")
        return ChatResponse(
            response=f"์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}",
            success=False,
            source_documents=[]
        )

@app.get("/")
async def root():
    return {"message": "ํ•œ๊ตญ์™ธ๊ตญ์–ด๋Œ€ํ•™๊ต(์„œ์šธ) ํ•™์‚ฌ ์ฑ—๋ด‡ API"}