Spaces:
Sleeping
Sleeping
Delete crop_selector2.py
Browse files- crop_selector2.py +0 -43
crop_selector2.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import streamlit as st
|
3 |
-
from sklearn.naive_bayes import GaussianNB
|
4 |
-
|
5 |
-
dataset = pd.read_csv(r"C:\Users\Kush\Desktop\hackathons\IITB\Crop_selection.csv")
|
6 |
-
features = dataset[['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall']]
|
7 |
-
target = dataset['label']
|
8 |
-
|
9 |
-
prices = pd.read_csv(r"C:\Users\Kush\Desktop\hackathons\IITB\crop_prices.csv")
|
10 |
-
|
11 |
-
|
12 |
-
model = GaussianNB()
|
13 |
-
model.fit(features, target)
|
14 |
-
|
15 |
-
st.title("Crop Selection App")
|
16 |
-
|
17 |
-
st.header("Input Soil Data:")
|
18 |
-
nitrogen = st.number_input("Nitrogen", min_value=0, max_value=100, value=50)
|
19 |
-
phosphorus = st.number_input("Phosphorus", min_value=0, max_value=100, value=50)
|
20 |
-
potassium = st.number_input("Potassium", min_value=0, max_value=100, value=50)
|
21 |
-
temperature = st.number_input("Temperature", min_value=0.0, max_value=100.0, value=25.0,step=1.,format="%.4f")
|
22 |
-
humidity = st.number_input("Humidity", min_value=0.0, max_value=100.0, value=50.0,step=1.,format="%.4f")
|
23 |
-
ph = st.number_input("pH", min_value=0.0, max_value=14.0, value=7.0,step=1.,format="%.4f")
|
24 |
-
rainfall = st.number_input("Rainfall", min_value=0.0, max_value=1000.0, value=500.0,step=1.,format="%.4f")
|
25 |
-
|
26 |
-
user_input = [[nitrogen, phosphorus, potassium, temperature, humidity, ph, rainfall]]
|
27 |
-
|
28 |
-
if st.button("Predict"):
|
29 |
-
predicted_crop = model.predict_proba(user_input)
|
30 |
-
|
31 |
-
crop_probabilities = list(zip(model.classes_, predicted_crop[0]))
|
32 |
-
|
33 |
-
# Sort crops based on probability estimates
|
34 |
-
sorted_crops = sorted(crop_probabilities, key=lambda x: x[1], reverse=True)
|
35 |
-
|
36 |
-
# Display the sorted crops
|
37 |
-
st.header("Top 3 Crops to grow:")
|
38 |
-
for i, (crop, probability) in enumerate(sorted_crops[:3]):
|
39 |
-
prob_percent = probability*100
|
40 |
-
#st.write(f"{i+1}. {crop}: {prob_percent:.2f}%")
|
41 |
-
average_price = prices.loc[prices['CROP'] == crop, 'AVG PRICES'].values[0]
|
42 |
-
|
43 |
-
st.write(f"{i+1}. {crop}: {prob_percent:.2f}% || Average Price: Rs.{average_price} / Quintal")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|